
# **DISCRETE SEMICONDUCTORS**

# DATA SHEET



# **PBSS5350T** 50 V low V<sub>CEsat</sub> PNP transistor

**Product specification** 

2002 Aug 08





# 50 V low V<sub>CEsat</sub> PNP transistor

# **PBSS5350T**

### **FEATURES**

- Low collector-emitter saturation voltage  $V_{\text{CEsat}}$  and corresponding low  $R_{\text{CEsat}}$
- High collector current capability
- High collector current gain
- Improved efficiency due to reduced heat generation.

## **APPLICATIONS**

- · Power management applications
- Low and medium power DC/DC convertors
- · Supply line switching
- · Battery chargers
- Linear voltage regulation with low voltage drop-out (LDO).

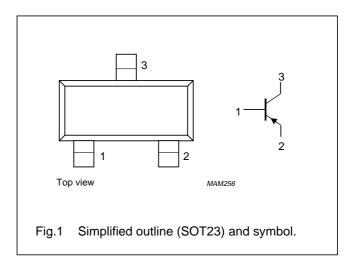
## **DESCRIPTION**

PNP low  $V_{\text{CEsat}}$  transistor in a SOT23 plastic package. NPN complement: PBSS4350T.

## **MARKING**

| TYPE NUMBER | MARKING CODE(1) |
|-------------|-----------------|
| PBSS5350T   | ZD*             |

### Note


- 1. \* = p: Made in Hong Kong.
  - \* = t: Made in Malaysia.
  - \* = w: Made in China.

### **QUICK REFERENCE DATA**

| SYMBOL             | PARAMETER                         | MAX. | UNIT |
|--------------------|-----------------------------------|------|------|
| V <sub>CEO</sub>   | collector-emitter voltage         | -50  | V    |
| I <sub>C</sub>     | collector current (DC)            | -2   | Α    |
| I <sub>CRP</sub>   | repetitive peak collector current | -3   | А    |
| R <sub>CEsat</sub> | equivalent on-resistance          | 135  | mΩ   |

#### **PINNING**

| PIN | DESCRIPTION |  |
|-----|-------------|--|
| 1   | base        |  |
| 2   | emitter     |  |
| 3   | collector   |  |



2002 Aug 08

2

# 50 V low V<sub>CEsat</sub> PNP transistor

PBSS5350T

### **LIMITING VALUES**

In accordance with the Absolute Maximum Rating System (IEC 60134).

| SYMBOL           | PARAMETER CONDITIONS              |                                         | MIN. | MAX.       | UNIT |
|------------------|-----------------------------------|-----------------------------------------|------|------------|------|
| V <sub>CBO</sub> | collector-base voltage            | open emitter                            | _    | -50        | V    |
| V <sub>CEO</sub> | collector-emitter voltage         | open base                               | _    | -50        | V    |
| V <sub>EBO</sub> | emitter-base voltage              | open collector                          | _    | <b>-</b> 5 | V    |
| Ic               | collector current (DC)            |                                         | _    | -2         | А    |
| I <sub>CRP</sub> | repetitive peak collector current | note 1                                  | _    | -3         | А    |
| I <sub>CM</sub>  | peak collector current            | single peak                             | _    | -5         | А    |
| I <sub>B</sub>   | base current (DC)                 |                                         | _    | -0.5       | Α    |
| P <sub>tot</sub> | total power dissipation           | T <sub>amb</sub> ≤ 25 °C; note 2        | _    | 300        | mW   |
|                  |                                   | T <sub>amb</sub> ≤ 25 °C; note 3        | _    | 480        | mW   |
|                  |                                   | T <sub>amb</sub> ≤ 25 °C; note 4        | _    | 540        | mW   |
|                  |                                   | T <sub>amb</sub> ≤ 25 °C; notes 1 and 2 | _    | 1.2        | W    |
| T <sub>stg</sub> | storage temperature               |                                         | -65  | +150       | °C   |
| Tj               | junction temperature              |                                         | _    | 150        | °C   |
| T <sub>amb</sub> | operating ambient temperature     |                                         | -65  | +150       | °C   |

### **Notes**

- 1. Operated under pulsed conditions: pulse width  $t_p \le 100$  ms; duty cycle  $\delta \le 0.25$ .
- 2. Device mounted on a printed-circuit board; single sided copper; tinplated; standard footprint.
- 3. Device mounted on a printed-circuit board; single sided copper; tinplated; mounting pad for collector 1 cm<sup>2</sup>.
- 4. Device mounted on a printed-circuit board; single sided copper; tinplated; mounting pad for collector 6 cm<sup>2</sup>.

### THERMAL CHARACTERISTICS

| SYMBOL              | PARAMETER                           | CONDITIONS                 | VALUE | UNIT |
|---------------------|-------------------------------------|----------------------------|-------|------|
| R <sub>th j-a</sub> | thermal resistance from junction to | in free air; note 1        | 417   | K/W  |
|                     | ambient                             | in free air; note 2        | 260   | K/W  |
|                     |                                     | in free air; note 3        | 230   | K/W  |
|                     |                                     | in free air; notes 1 and 4 | 104   | K/W  |

#### **Notes**

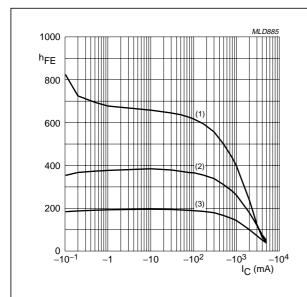
- Device mounted on a printed-circuit board; single sided copper; tinplated; standard footprint.
- 2. Device mounted on a printed-circuit board; single sided copper; tinplated; mounting pad for collector 1 cm<sup>2</sup>.
- Device mounted on a printed-circuit board; single sided copper; tinplated; mounting pad for collector 6 cm<sup>2</sup>.
- 4. Operated under pulsed conditions: pulse width  $t_p \le 100$  ms; duty cycle  $\delta \le 0.25$ .

# 50 V low $V_{\text{CEsat}}$ PNP transistor

PBSS5350T

# **CHARACTERISTICS**

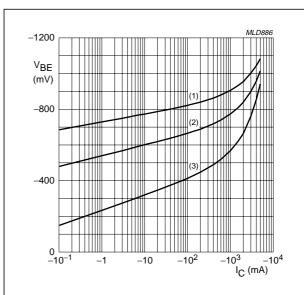
 $T_{amb}$  = 25 °C unless otherwise specified.


| SYMBOL             | PARAMETER                      | CONDITIONS                                                     | MIN. | TYP. | MAX. | UNIT |
|--------------------|--------------------------------|----------------------------------------------------------------|------|------|------|------|
| I <sub>CBO</sub>   | collector-base cut-off current | $V_{CB} = -50 \text{ V}; I_E = 0$                              | _    | -    | -100 | nA   |
|                    |                                | $V_{CB} = -50 \text{ V}; I_E = 0; T_j = 150 \text{ °C}$        | _    | _    | -50  | μΑ   |
| I <sub>EBO</sub>   | emitter-base cut-off current   | $V_{EB} = -5 \text{ V}; I_C = 0$                               | _    | _    | -100 | nA   |
| h <sub>FE</sub>    | DC current gain                | $V_{CE} = -2 \text{ V}; I_{C} = -100 \text{ mA}$               | 200  | _    | _    |      |
|                    |                                | $V_{CE} = -2 \text{ V}; I_{C} = -500 \text{ mA}$               | 200  | _    | _    |      |
|                    |                                | $V_{CE} = -2 \text{ V}; I_{C} = -1 \text{ A}; \text{ note 1}$  | 200  | _    | _    |      |
|                    |                                | $V_{CE} = -2 \text{ V}; I_{C} = -2 \text{ A}; \text{ note 1}$  | 130  | _    | _    |      |
|                    |                                | $V_{CE} = -2 \text{ V}; I_{C} = -3 \text{ A}; \text{ note 1}$  | 80   | _    | _    |      |
| V <sub>CEsat</sub> | collector-emitter saturation   | $I_C = -500 \text{ mA}; I_B = -50 \text{ mA}$                  | _    | _    | -90  | mV   |
|                    | voltage                        | $I_C = -1 \text{ A}; I_B = -50 \text{ mA}$                     | _    | _    | -180 | mV   |
|                    |                                | $I_C = -2 \text{ A}$ ; $I_B = -100 \text{ mA}$ ; note 1        | _    | _    | -320 | mV   |
|                    |                                | $I_C = -2 \text{ A}$ ; $I_B = -200 \text{ mA}$ ; note 1        | _    | _    | -270 | mV   |
|                    |                                | $I_C = -3 \text{ A}$ ; $I_B = -300 \text{ mA}$ ; note 1        | _    | _    | -390 | mV   |
| R <sub>CEsat</sub> | equivalent on-resistance       | $I_C = -2 \text{ A}$ ; $I_B = -200 \text{ mA}$ ; note 1        | _    | 90   | 135  | mΩ   |
| V <sub>BEsat</sub> | base-emitter saturation        | $I_C = -2 \text{ A}$ ; $I_B = -100 \text{ mA}$ ; note 1        | _    | _    | -1.1 | V    |
|                    | voltage                        | $I_C = -3 \text{ A}$ ; $I_B = -300 \text{ mA}$ ; note 1        | _    | _    | -1.2 | V    |
| V <sub>BEon</sub>  | base-emitter turn-on voltage   | $V_{CE} = -2 \text{ V}; I_{C} = -1 \text{ A}; \text{ note 1}$  | -1.2 | _    | _    | V    |
| f <sub>T</sub>     | transition frequency           | $I_C = -100 \text{ mA}; V_{CE} = -5 \text{ V};$<br>f = 100 MHz | 100  | _    | _    | MHz  |
| C <sub>c</sub>     | collector capacitance          | $V_{CB} = -10 \text{ V}; I_E = I_e = 0; f = 1 \text{ MHz}$     | _    | _    | 35   | pF   |

# Note

1. Pulse test:  $t_p \le 300~\mu s;~\delta \le 0.02.$ 

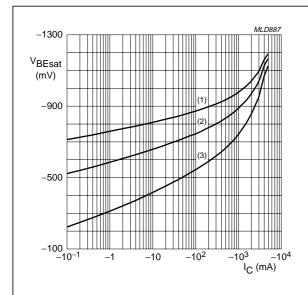
# 50 V low V<sub>CEsat</sub> PNP transistor


PBSS5350T



 $V_{CE} = -2 V$ .

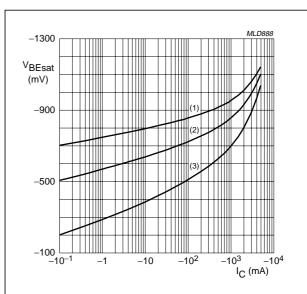
- (1) T<sub>amb</sub> = 150 °C.
- (2)  $T_{amb} = 25 \, ^{\circ}C$ .
- (3)  $T_{amb} = -55 \, ^{\circ}C$ .


Fig.2 DC current gain as a function of collector current; typical values.



 $V_{CE} = -2 V$ .

- (1)  $T_{amb} = -55 \, ^{\circ}C$ .
- (2)  $T_{amb} = 25 \, ^{\circ}C$ .
- (3) T<sub>amb</sub> = 150 °C.


Fig.3 Base-emitter voltage as a function of collector current; typical values.



 $I_C/I_B = 10$ .

- (1)  $T_{amb} = -55 \, ^{\circ}C$ .
- (2)  $T_{amb} = 25 \, ^{\circ}C$ .
- (3)  $T_{amb} = 150 \, ^{\circ}C$ .

Fig.4 Base-emitter saturation voltage as a function of collector current; typical values.



 $I_{\rm C}/I_{\rm B} = 20$ .

5

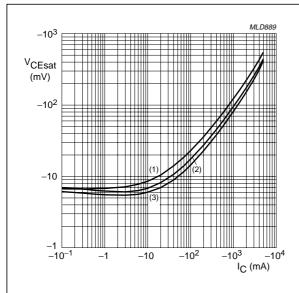
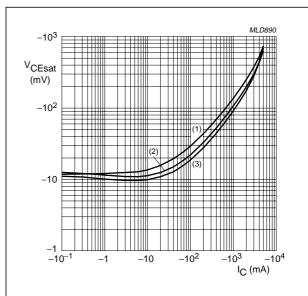

- (1)  $T_{amb} = -55 \, ^{\circ}C$ .
- (2)  $T_{amb} = 25 \, ^{\circ}C$ .
- (3)  $T_{amb} = 150 \, ^{\circ}C$ .

Fig.5 Base-emitter saturation voltage as a function of collector current; typical values.

2002 Aug 08

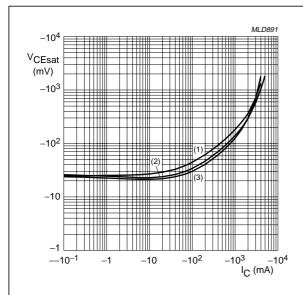
# 50 V low V<sub>CEsat</sub> PNP transistor


PBSS5350T



 $I_{\rm C}/I_{\rm B} = 10.$ 

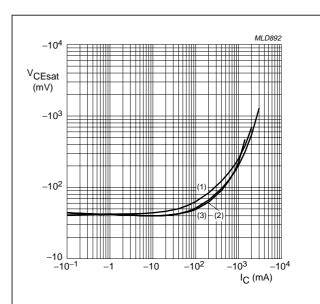
- (1)  $T_{amb} = 150 \, ^{\circ}C$ .
- (2)  $T_{amb} = 25 \, ^{\circ}C$ .
- (3)  $T_{amb} = -55 \, ^{\circ}C$ .


Fig.6 Collector-emitter saturation voltage as a function of collector current; typical values.



 $I_{\rm C}/I_{\rm B} = 20$ .

- (1)  $T_{amb} = 150 \, ^{\circ}C$ .
- (2)  $T_{amb} = 25 \, ^{\circ}C$ .
- (3)  $T_{amb} = -55 \, ^{\circ}C$ .


Fig.7 Collector-emitter saturation voltage as a function of collector current; typical values.



 $I_{\rm C}/I_{\rm B} = 50.$ 

- (1) T<sub>amb</sub> = 150 °C.
- (2)  $T_{amb} = 25 \, ^{\circ}C$ .
- (3)  $T_{amb} = -55 \, ^{\circ}C$ .

Fig.8 Collector-emitter saturation voltage as a function of collector current; typical values.



 $I_{\rm C}/I_{\rm B} = 100.$ 

- (1)  $T_{amb} = 150 \, ^{\circ}C$ .
- (2)  $T_{amb} = 25 \, ^{\circ}C$ .
- (3)  $T_{amb} = -55 \, ^{\circ}C$ .

Fig.9 Collector-emitter saturation voltage as a function of collector current; typical values.

# 50 V low $V_{CEsat}$ PNP transistor

PBSS5350T

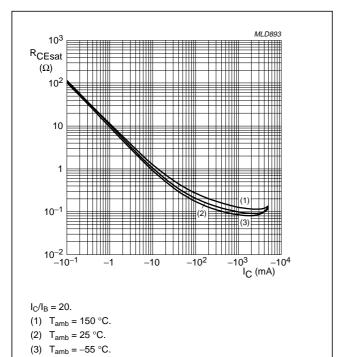



Fig.10 Equivalent on-resistance as a function of

collector current; typical values.

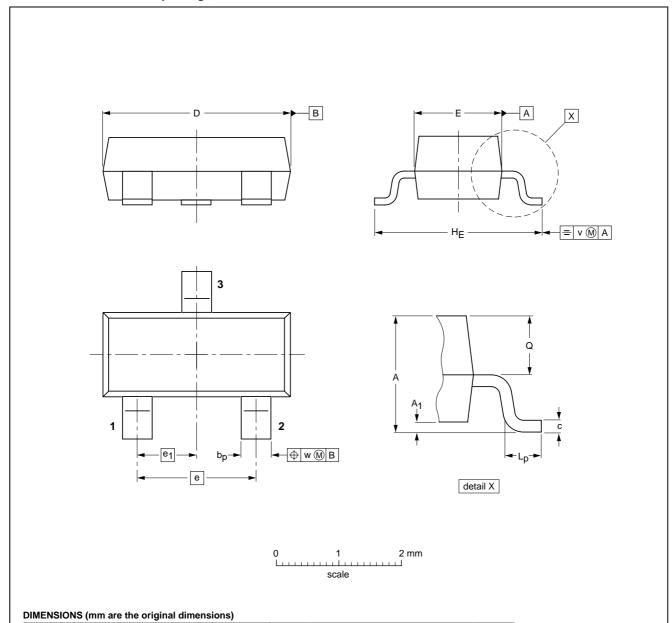
# 50 V low $V_{\text{CEsat}}$ PNP transistor

PBSS5350T

## **PACKAGE OUTLINE**

UNIT

mm


Α

1.1 0.9 max

0.1

Plastic surface mounted package; 3 leads

SOT23



| OUTLINE |     | REFER    | RENCES | EUROPEAN   | ISSUE DATE          |  |
|---------|-----|----------|--------|------------|---------------------|--|
| VERSION | IEC | JEDEC    | EIAJ   | PROJECTION | ISSUE DATE          |  |
| SOT23   |     | TO-236AB |        |            | <del>97-02-28</del> |  |

0.95

 $H_{\mathsf{E}}$ 

 $L_{p}$ 

0.45 0.15 Q

0.55 0.45 w

0.1

2002 Aug 08 8

 $\mathsf{b}_{\mathsf{p}}$ 

0.48

0.38

D

3.0 2.8

С

0.15

0.09

Ε

1.4 1.2 е

1.9

# 50 V low V<sub>CEsat</sub> PNP transistor

PBSS5350T

#### **DATA SHEET STATUS**

| DATA SHEET STATUS(1) | PRODUCT<br>STATUS <sup>(2)</sup> | DEFINITIONS                                                                                                                                                                                                                                                                                                            |
|----------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective data       | Development                      | This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.                                                                                                                            |
| Preliminary data     | Qualification                    | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.                                     |
| Product data         | Production                       | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A. |

#### **Notes**

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

## **DEFINITIONS**

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## **DISCLAIMERS**

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

# 50 V low $V_{\text{CEsat}}$ PNP transistor

PBSS5350T

NOTES

# 50 V low $V_{\text{CEsat}}$ PNP transistor

PBSS5350T

NOTES

# Philips Semiconductors – a worldwide company

#### **Contact information**

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

SCA74

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613514/01/pp12

Date of release: 2002 Aug 08

Document order number: 9397 750 09918

Let's make things better.





