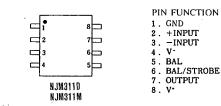
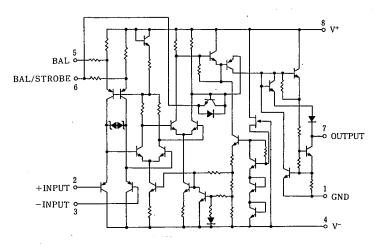
PRECISION VOLTAGE COMPARATOR


GENERAL DESCRIPTION

The NJM311 is a valtage comparator that has low input currents. It is also designed to operate covering a wider range of supply voltages from Standard \pm 15V op amp supplies down to the single 5V supply used for IC logic. Its output is compatible with RTL, DTL and TTL as well as MOS circuits. Further more, it can drive lamps or relays, switching voltages up to 40V at currents as high as 50mA. Offset balancing is provided, and the outputs can be OR wired.

FEATURES

- Operating Voltage
- Single Supply Operation
- Single Circuit
- With Vio Trim Terminal
- Response Time
- Package Outline
- Bipolar Technology


PIN CONFIGURATION

 $(+5V \sim +36V)$

(200ns typ.) DIP8, DMP8

EQUIVALENT CIRCUIT

PACKAGE OUTLINE

NJM311D

FTF

NJM311M

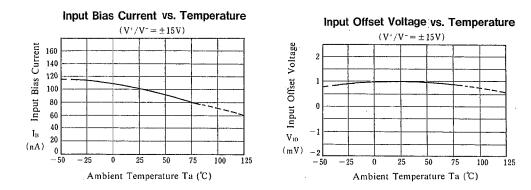
Ľ

NJM311

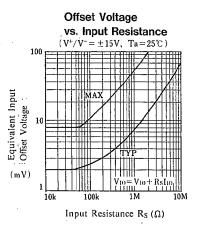
ABSOLUTE MAXIMUM RATINGS			(Ta=25℃)	
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*/V-	36(±18)	v	
Output to Negative Supply Voltage	V7-4	40	v	
Ground to Negative Supply Voltage	V1-4	30	v	
Differential Input Voltage	VID	±30	v	
Input Voltage	VIN	±15 (note 1)	v	
Power Dissipation	PD	(DIP8) 500	mW	
		(DMP8) 300	mW	
Operating Temperature Range	Topr	-40~+85	Ĉ	
Storage Temperature Range	Tstg	-40~+125	C .	

(note) For supply voltage less than $\pm 15V$, the absolute input voltage is equal to the supply voltage.

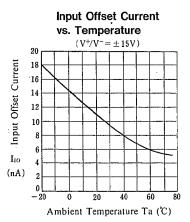
ELECTRICAL CHARACTERISTICS :

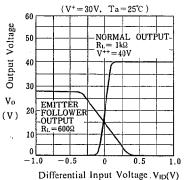

 $(V^{+}/V^{-}=\pm 15V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	VIO	$R_{s} \leq 50 k \Omega$	_	2.0	7.5	mV
Input Offset Current	IIO		-	6.0	50	nΑ
Input Bias Current	I _B		—	100	250	nA
Voltage Gain	Av			106	—	dB
Response Time	tR			200		; ns
Saturation Voltage	VSAT	$V_{IN} \leq -10 \text{mV}, I_0 = 50 \text{mA}$		0.75	1.5	ν
Strobe ON Current	ISTR		<u> </u>	3.0		mA
Output Leakage Current	ILEAK	$V_{iN} \ge 10 \text{mV}, V_0 = 35 \text{V}$	—	0.2	50	nА
Input Common Mode Voltage Range	VICM		-	±i4	· ·	v
Positive Quiescent Current	I+		-	5.1	7.5	mA
Negative Quiescent Current	-1		-	4.1	5.0	mA

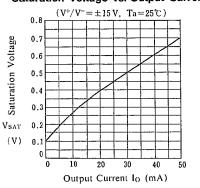

-New Japan Radio Co.,Ltd.-

5-4-


TYPICAL CHARACTERISTICS

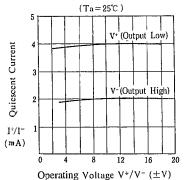

-New Japan Radio Co.,Ltd.-

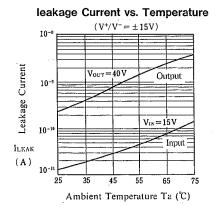
Input Bias Current vs. Differential Input Voltage $(V^+/V^- = \pm 15V, T_a = 25^{\circ}C)$ 225 200 Bias Current 175 150 125 Input 100 75 $\mathbf{I}_{\mathbf{B}}$ 50 (nA) 25 0 -16 - 12 - 8 - 40 4 8 12 16 Differential Input Voltage VID (mV)


Output Voltage vs. Differential Input Voltage

5-5

NJM311

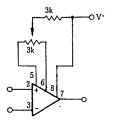

TYPICAL CHARACTERISTICS

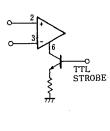


Saturation Voltage vs. Output Current

Quiescent Current vs. Operating Voltage

.

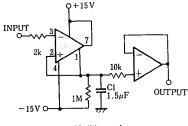

6


-New Japan Radio Co., Ltd.

5-6-

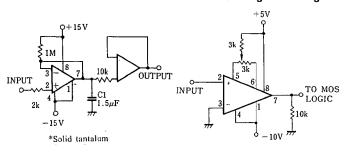
■ TYPICAL APPLICATIONS

Offset Null Circuit



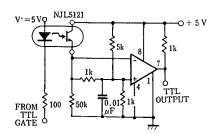
Strobing

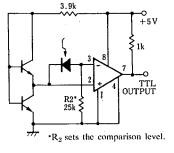
Increasing Input Stage Current


Positive Peak Detector

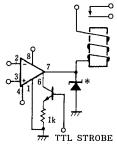
*Solid tantalum

Negative Peak Detector


Zero Crossing Detector driving MOS Logic



Digital Transmission Isolator


Precision Photodiode Comparator

Relay Driver with Strobe

-New Japan Radio Co.,Ltd.-

*Absorbs inductive kickback of relay and protects IC from severe voltage.

5-7

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.