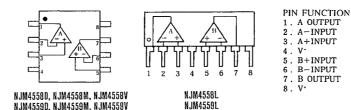
### DUAL OPERATIONAL AMPLIFIER

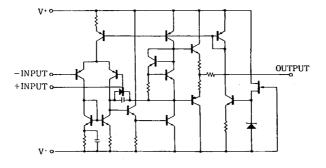
### GENERAL DESCRIPTION

The NJM4558/4559 integrated circuit are a dual high-gain operational amplifier internally compensated and constructed on a single silicon chip using an advanced epitaxial process.

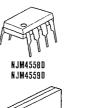
Combining the features of the NJM741 with the close parameter matching and tracking of a dual device on a monolithic chip results in unique performance characteristics. Excellent channel separation allow the use of the dual device in single NJM741 operational amplifier applications providing density. It is especially well suited for applications in differential-in, differential-out as well as in potentiometric amplifiers and where gain and phase matched channels are mandatory.


FEATURES

JRC


- Operating Voltage
- High Voltage Gain
- High Input Resistance
- Package Outline
- Bipolar Technology

(±4V~±18V) (100dB typ.) (5MΩ typ.) DIP8, DMP8, SIP8, SSOP8


PIN CONFIGURATION



■ EQUIVALENT CIRCUIT (1/2 Shown)



### PACKAGE OUTLINE



NJM4558L

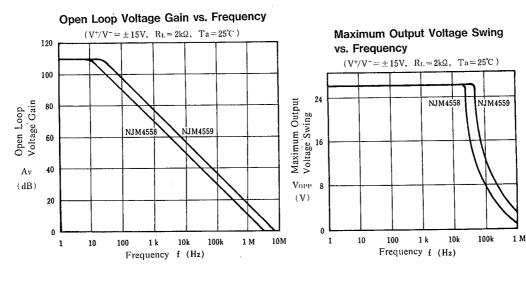
NJM4559L



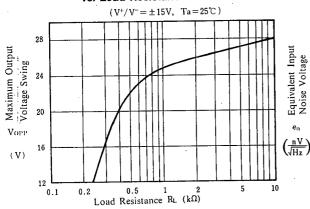
NJM4558M NJM4559M

NJM4558V NJM4559V

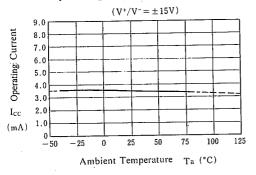
#### (Ta=25℃) ABSOLUTE MAXIMUM RATINGS UNIT PARAMETER SYMBOL RATINGS V+/V-Supply Voltage $\pm 18$ v Differential Input Voltage Vid $\pm 30$ ٧ ٧ $V_{1C}$ ±15 (note) Input Voltage (DIP8) 500 mW (DMP8) 300 mW Po Power Dissipation (SSOP8)250 mW (SIP8) 800 m₩ -40~+85 °C Topr Operating Temperature Range °C Tstg $-40 \sim +125$ Storage Temperature Range


(note) For supply voltage less than  $\pm$  15V, the absolute maximum input voltage is equal to the supply voltage.

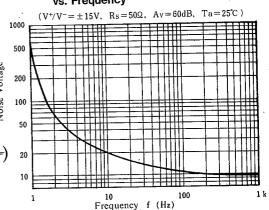
### ELECTRICAL CHARACTERISTICS


 $(V^{+}/V^{-}=\pm 15V \text{ Ta}=25^{\circ}C)$ 

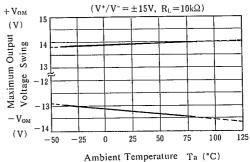
| PARAMETER                       | SYMBOL           | TEST CONDITION                       | MIN.   | TYP. | MAX. | UNIT  |
|---------------------------------|------------------|--------------------------------------|--------|------|------|-------|
| Input Offset Voltage            | Vio              | $R_s \leq 10 k\Omega$                | -      | 0.5  | 6    | mν    |
| Input Offset Current            | lio              |                                      | —      | 5    | 200  | nA    |
| Input Bias Current              | IB               |                                      | —      | 25   | 500  | nA    |
| Input Resistance                | RIN              |                                      | 0.3    | 5    |      | MΩ    |
| Large Signal Voltage Gain       | Av               | $R_L \ge 2k\Omega$ , $V_O = \pm 10V$ | 86     | 100  |      | dB    |
| Maximum Output Voltage Swing 1  | VOMI             | $R_L \ge 10k\Omega$                  | 土12    | ±14  | -    | v     |
| Maximum Output Voltage Swing 2  | V <sub>OM2</sub> | $R_L \ge 2\Omega$                    | ±10    | ±13  | -    | v     |
| Input Common Mode Voltage Range | VICM             |                                      | ±12    | 14   |      | v     |
| Common Mode Rejection Ratio     | CMR              | $R_{S} \leq 10k\Omega$               | 70     | 90   | —    | dB    |
| Supply Voltage Rejection Ratio  | SVR              | $R_{S} \leq 10 k \Omega$             | . 76.5 | 90   |      | dB    |
| Operating Current               | Icc              |                                      |        | 3.5  | 5.7  | mA    |
| Slew Rate                       |                  |                                      |        |      |      |       |
| NJM4558                         | SR               |                                      | -      | 1    |      | V/µS  |
| NJM4559                         | SR               |                                      | —      | 2    | _    | V/µS  |
| Equivalent Input Noise Voltage  | V <sub>NI</sub>  | RIAA, $R_s = 1k\Omega$ , 30kHz LPF   |        | 1.4  |      | μVrms |
| Gain Bandwidth Product          | GB               |                                      |        |      | 1    |       |
| NJM4558                         |                  |                                      |        | 3    | 1    | MHz   |
| NJM4559                         |                  |                                      | 1      | 6    |      | MHz   |


### **TYPICAL CHARACTERISTICS**







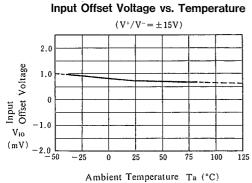





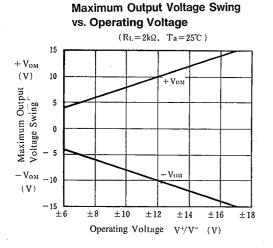

Equivalent Input Noise Voltage vs. Frequency



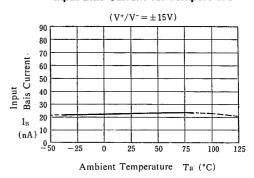
## Maximum Output Voltage Swing vs. Temperature



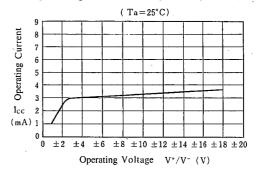

-New Japan Radio Co.,Ltd.-




4-207


### **TYPICAL CHARACTERISTICS**




# Ambient Temperature Ta (°C)



### Input Bias Current vs. Temperature



**Operating Current vs. Operating Voltage** 



### **MEMO**

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.