
General Purpose Transistors

NPN Silicon

TO-92 (TO-226AA)

2N4264 2N4265

MAXIMUM RATINGS

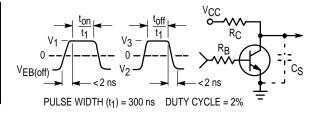
Rating	Symbol	2N4264	2N4265	Unit	
Collector-Emitter Voltage	VCEO	15 12		Vdc	
Collector-Base Voltage	VCBO	3	Vdc		
Emitter-Base Voltage	V _{EBO}	6	6.0		
Collector Current — Continuous	IC	20	200		
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD		350 2.8		
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.0 8.0		Watts mW/°C	
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150		°C	

THERMAL CHARACTERISTICS

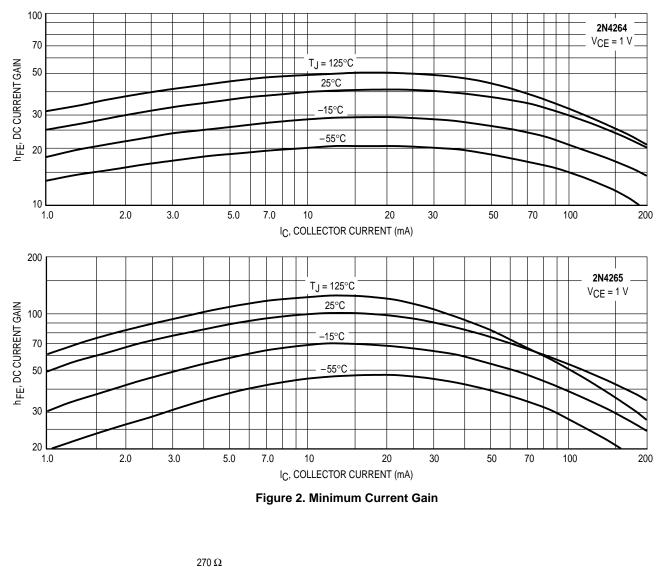
Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta}JA$	357	°C/W
Thermal Resistance, Junction to Case	$R_{\theta}JC$	125	°C/W

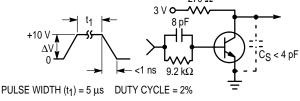
ELECTRICAL CHARACTERISTICS (T _A = 25°C unless	ss otherwise noted)				
Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS		· · · ·			
Collector-Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)	2N4264 2N4265	V(BR)CEO	15 12		Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \ \mu Adc, I_E = 0$)		V _(BR) CBO	30	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)		V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 12 Vdc, V _{EB(off)} = 0.25 Vdc) (V _{CE} = 12 Vdc, V _{EB(off)} = 0.25 Vdc, T _A = 100°C)		IBE∨	_	0.1 10	μAdc
Collector Cutoff Current (V _{CE} = 12 Vdc, V _{EB(off)} = 0.25 Vdc)		ICEX	—	100	nAdc

2N4264 2N4265


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

	Symbol	Min	Мах	Unit		
ON CHARACTERISTIC	6				-	-
DC Current Gain (I _C = 1.0 mAdc, V _{CE} = 1	2N4264 2N4265	hFE	25 50		_	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1)$		2N4264 2N4265		40 100	160 400	
$(I_C = 10 \text{ mAdc}, V_{CE} = 1)$		2N4264 2N4265		20 45	_	
$(I_C = 30 \text{ mAdc}, V_{CE} = 1)$		2N4264 2N4265		40 90	_	
(I _C = 100 mAdc, V _{CE} =		2N4264 2N4265		30 55	_	
(I _C = 200 mAdc, V _{CE} =		2N4264 2N4265		20 55	_	
Collector-Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc})^{(1)}$					0.22 0.35	Vdc
Base-Emitter Saturation Voltage $(I_{C} = 10 \text{ mAdc}, I_{B} = 1.0 \text{ mAdc})$ $(I_{C} = 100 \text{ mAdc}, I_{B} = 10 \text{ mAdc})^{(1)}$				0.65 0.75	0.8 0.95	Vdc
SMALL-SIGNAL CHAR	ACTERISTICS					
Current-Gain - Bandwid	th Product (I _C = 10 mAdc, V_{CE} = 10 Vdc, f =	= 100 MHz)	fT	300	_	MHz
Input Capacitance (V _{EB} =	0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	_	8.0	pF
Output Capacitance (V _{CB}	= 5.0 Vdc, I _E = 0, f = 1.0 MHz, I _E = 0)		C _{obo}	—	4.0	pF
SWITCHING CHARACT	ERISTICS					
Delay Time	(V _{CC} = 10 Vdc, V _{EB(off)} = 2.0 Vdc,		td	_	8.0	ns
Rise Time	$I_{C} = 100 \text{ mAdc}, I_{B1} = 10 \text{ mAdc})$ (Fig. 1, T	(Fig. 1, Test Condition C)		_	15	ns
Storage Time	$V_{CC} = 10$ Vdc, (I _C = 10 mAdc, for t _s)		t _S	_	20	ns
Fall Time	(I _C = 100 mA for t _f) (I _{B1} = −10 mA) (I _{B2} = 10 mA) (Fig. 1, Tes	st Condition C)	tf		15	ns
Turn–On Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{EB(off)} = 1.5 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = 3.0 \text{ mAdc}) \text{ (Fig. 1, Te}$		t _{on}		25	ns
Turn–Off Time	$ (V_{CC} = 3.0 \text{ Vdc}, \text{ I}_{C} = 10 \text{ mAdc}, \\ \text{I}_{B1} = 3.0 \text{ mAdc}, \text{ I}_{B2} = 1.5 \text{ mAdc}) \text{ (Fig. 1,} $	Test Condition A)	toff	_	35	ns
Storage Time	$ (V_{CC} = 10 \text{ Vdc}, \text{ I}_{C} = 10 \text{ mA}, \\ \text{I}_{B1} = \text{I}_{B2} = 10 \text{ mAdc}) \text{ (Fig. 1, Test Condit} $	ion B)	t _S	_	20	ns
Total Control Charge	al Control Charge (V _{CC} = 3.0 Vdc, I _C = 10 mAdc, I _B = mAdc) (Fig. 3, Test Condition A)				80	рС


1. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle = 2.0%.


Test Condition	IC	vcc	RS	RC	C _{S(max)}	V _{BE(off)}	V ₁	v ₂	V ₃
	mA	V	Ω	Ω	pF	V	V	V	V
A	10	3	3300	270	4	-1.5	10.55	-4.15	10.70
В	10	10	560	960	4	—	—	-4.65	6.55
С	100	10	560	96	12	-2.0	6.35	-4.65	6.55

CURRENT GAIN CHARACTERISTICS

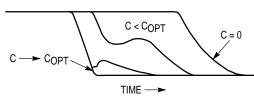


Figure 4. Turn–Off Waveform


NOTE 1

When a transistor is held in a conductive state by a base current, I_B, a charge, Q_S , is developed or "stored" in the transistor. Q_S may be written: $Q_S = Q_1 + Q_V + Q_X$.

 Q_1 is the charge required to develop the required collector current. This charge is primarily a function of alpha cutoff frequency. Q_V is the charge required to charge the collector–base feedback capacity. Q_X is excess charge resulting from overdrive, i.e., operation in saturation.

The charge required to turn a transistor "on" to the edge of saturation is the sum of Q₁ and Q_V which is defined as the active region charge, Q_A. Q_A = I_{B1}t_r when the transistor is driven by a constant current step (I_{B1}) and I_{B1} < < $\frac{IC}{hFF}$.

If I_B were suddenly removed, the transistor would continue to conduct until Q_S is removed from the active regions through an external path or through internal recombination. Since the internal recombination time is long compared to the ultimate capability of a transistor, a charge, Q_T, of opposite polarity, equal in magnitude, can be stored on an external capacitor, C, to neutralize the internal charge and considerably reduce the turn–off time of the transistor. Figure 3 shows the test circuit and Figure 4 the turn–off waveform. Given Q_T from Figure 13, the external C for worst–case turn–off in any circuit is: $C = Q_T/\Delta V$, where ΔV is defined in Figure 3.

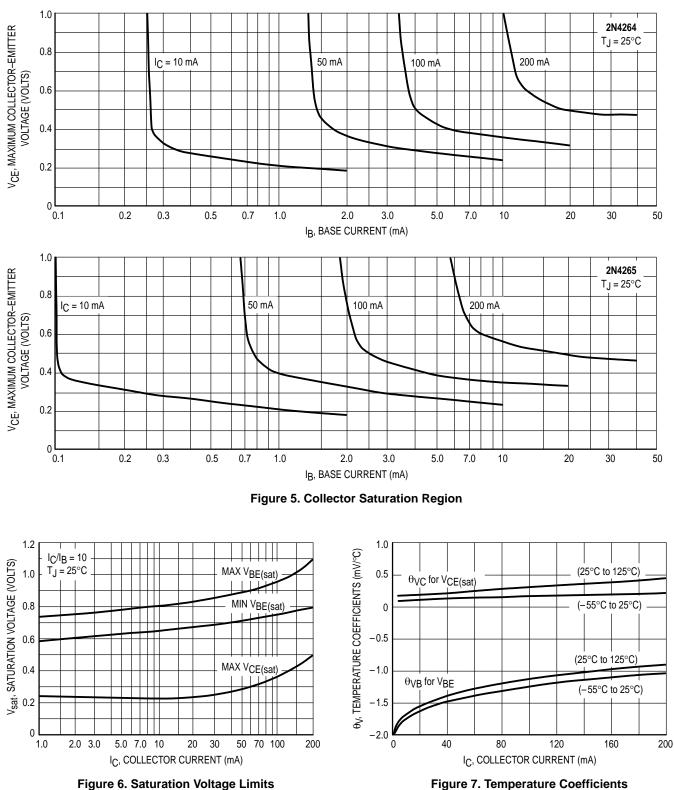


Figure 7. Temperature Coefficients

DYNAMIC CHARACTERISTICS

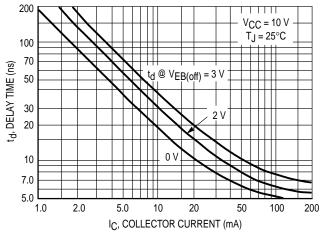


Figure 8. Delay Time

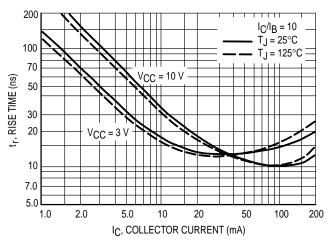


Figure 9. Rise Time

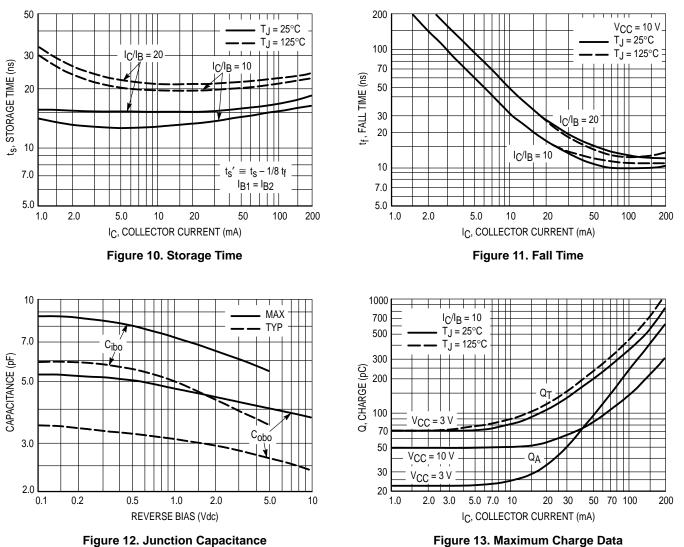
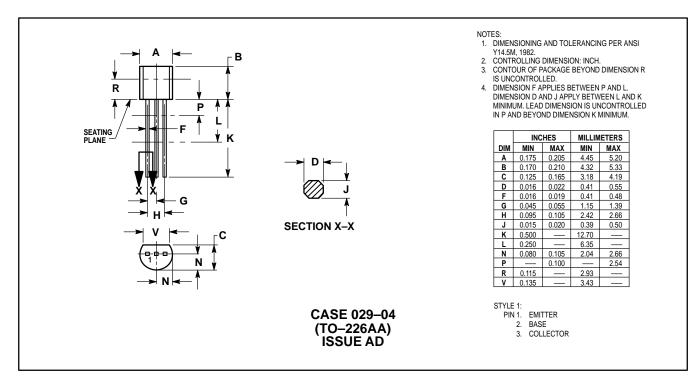



Figure 13. Maximum Charge Data

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (**A**) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

