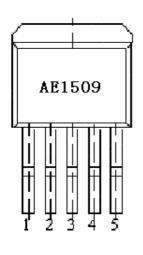
PWM BUCK DC/DC CONVERTER

3.3V, 5V, 12V three fixed output version

AE1509

Features


and adjustable version
Output load current 2A
Input voltage range up to 36V
Requires only 4 external components
150 kHz fixed frequency internal
oscillator
TTL shutdown capability
Low power standby mode,
I_Q typically 80 µA
High efficiency
Thermal shutdown and current
limit protection

Application

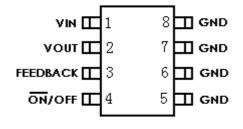
Simple high-efficiency step-down (buck) regulator

LCD switching regulators

Pin Configuration

T0-263-5L

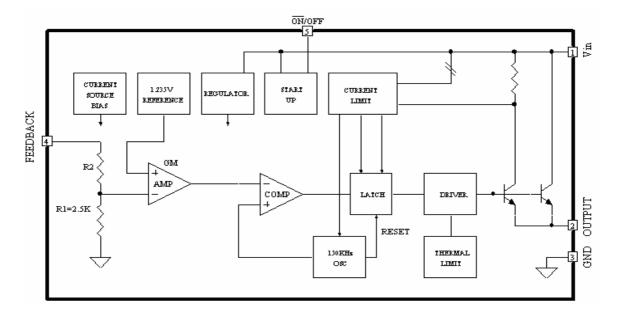
General Description


The AE1509 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 2A load with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5V,12V version and adjustable version.

Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation, and a fixed frequency oscillator.

The AE1509 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators.

Other features include a guaranteed $\pm 5\%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 15\%$ on the oscillator frequency. External shutdown is included, featuring typically $80\mu A$ standby current. Selfprotection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.


Pin No.	Symbol	Parameter		
1	V _{IN}	DC Input		
2	V _{OUT}	DC Output		
3	GND	GND		
4	Feedback	Feedback signal		
5	ON /OFF	Standby control		

CO	D O	T
20	P-8	Ι,

Pin No.	Symbol	Parameter		
1	V_{IN}	DC Input		
2	V_{OUT}	DC Output		
3	Feedback	Feedback signal		
4	ON /OFF	Standby control		
5-8	GND	GND		

Block Diagram

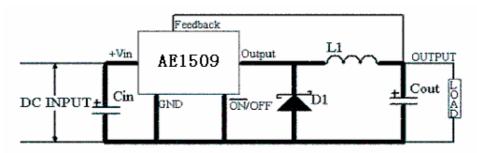
Absolute Maximum Ratings(note1)

	Parameter	Rating	Unit
	Maximum Supply Voltage	36	V
	ON/OFF Pin Input Voltage	-0.3 ~ 25	V
	Feedback Pin Voltage	-0.3 ~ 25	V
Power Dissipation		Internally limited	
S	Storage Temperature Range		
Maximum Junction Temperature		150	
Conditions	Temperature Range	-40 ~ 125	
	Supply Voltage	5 ~ 36	V

CCM

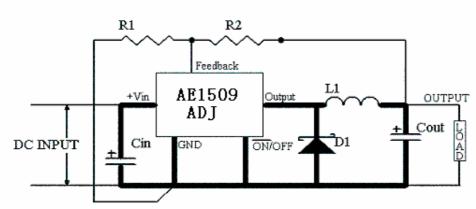
Electrical Characteristics All Output Voltage Versions Electrical Characteristics (otherwise specified, $V_{IN} = 12V, I_{LOAD} = 500$ mA)

V₀=3.3V


		Conditions		Į.	XE1509 - XX	X	
symbol	Parameter			Min (Note 4)	Typ (Note 3)	Max (Note4)	Units
f _O	Oscillator Frequency	(Note 6)		127	150	173	kHz
V_{SAT}	Saturation Voltage	I _{OUT} =2A(I	Notes 7, 8)		1.15	1.40	V
D0	Max Duty Cycle	\overline{ON} (Note 8)		100		%
DC	Min Duty Cycle	OFF (Note 9)		0		%
	Current Limit	Peak	Current				
I _{CL}	Current Limit	(Note	es 7, 8)	2.30	2.70	3.05	Α
		Outp	ut = 0V			60	μA
ΙL	Output Leakage	(Note	es 7, 9)			00	μΛ
'L	Current	·	ut =-1V		5	30	mA
		`	es 10)				
IQ	Quiescent Current	,	ote 9)		7.20	12	mA
I _{STBY}	Standby Quiescent		= pin = 5V		80	190	μA
	Current	(OFF) (Note 10)				'
JC	Thermal Resistance	SOP-8L	Junction to case		15		/W
JA	Thermal Resistance With copper area of approximately 3 in ²	SOP-8L	Junction to ambient		70		/W
JC	Thermal Resistance	TO263	Junction to case		2		/W
JA	Thermal Resistance With copper area of approximately 2.5 in ²	TO263	Junction to ambient		50		/W
ON/OFF	CONTROL					•	
	\overline{ON}/OFF Pin				1.4		V
V_{IH}	Logic Input	Low (Reg	ulator on)			0.6	V
V_{IL}	Threshold Voltage	High (Reg	gulator off)	2.0			V
I _H	\overline{ON}/OFF Pin Input		_C =2.5V ator OFF)		6	15	μA
ΙL	Current	V _{LOGI}	c=0.5V ator ON)		0.02	2	μΑ
Symbol	Parameter		nditions	Min (Note 4)	Typ (Note 3)	Max (Note4)	Units

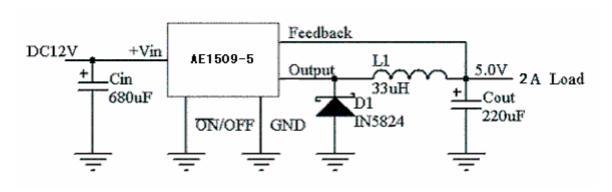
			<i>F</i>			-
V _{OUT}	Output Voltage	e 5V V _{IN} 36V 0.2A I _{LOAD} 2A	3.15	3.30	3.40	V
	Efficiency	V _{IN} =12V , I _{LOAD} =2A		72		%
V _o =5V						
V_{OUT}	Output Voltage	7V V _{IN} 36V 0.2A I _{LOAD} 2A	4.80	5.0	5.15	\
	Efficiency	V _{IN} =12V , I _{LOAD} =2A		80		%
V _O =12V	1		l			
V _{OUT}	Output	15V V _{IN} 36V				
	Voltage 0	I_{LOAD} $2A$	12	11.6	12.35	V
	Efficiency	V _{IN} =18V , I _{LOAD} =2A		90		%
Vout is adj	ustable					
$V_{ t FB}$	Feedback Voltage	$4.5V \ V_{\text{IN}} \ 36V$ $0.2A \ I_{\text{LOAD}} \ 2A$ V_{OUT} programmed for $3V.$	1.195	1.230	1.255	V
	Efficiency	V_{IN} =12V , V_{OUT} =3V , I_{LOAD} =2A		71		%

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
- Note 2: The human body model is a 100 pF capacitor discharged through a 1.5k resistor into each pin.
- Note 3: Typical numbers are at 25 and represent the most likely norm.
- Note4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
- Note5: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance.
- Note6: The switching frequency is reduced when the second stage current limit is activated.
- Note7: No diode, inductor and capacitor connected to output pin.
- Note8: Feedback pin removed from output and connected to 0V to force the output transistor switch ON.
- Note9: Feedback pin removed from output and connected to 12V for the 3.3V, 5V version, and 15v for 12v version to force the output transistor switch OFF.
- Note10: $V_{IN} = 36V$.


Testing Circuit

Fixed Output Voltage Versions

 C_{IN} —470 $\mu F,\,50V,\,Aluminum$ Electrolytic Nichicon "PL Series" C_{OUT} —220 $\mu F,\,25V$ Aluminum Electrolytic, Nichicon "PL Series" D1 —2A, 40V Schottky Rectifier, 1N5822 L1 —68 $\mu H,\,L38$


Adjustable Output Voltage Versions

Note:

- 1. Keep Feedback wiring away from inductor flux and heavy line must be kept short and use ground plane construction for best results.
- 2. For this two package version, the test circuit and typical application circuit are same.

Typical Application circuit

Pin Functions

$+V_{IN}$

This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Ground

Circuit ground.

Output

Internal switch. The voltage at this pin switches between $(+V_{IN}-V_{SAT})$ and approximately–0.5V,with a duty cycle of approximately V_{OUT} / V_{IN} . To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept a minimum.

Feedback

Senses the regulated output voltage to complete the feedback loop.

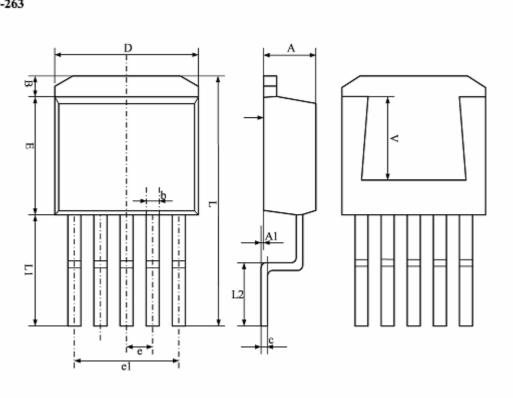
ON/OFF

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 150uA. Pulling this pin below a threshold voltage of approximately 1.4V turns the regulator on, and pulling this pin above 1.4V (up to a maximum of 25V) shuts the regulator down. If this shutdown feature is not needed, the \overline{ON}/OFF pin can be wired to the ground pin or it can be left open, in either case the regulator will be in the ON condition.

External Components

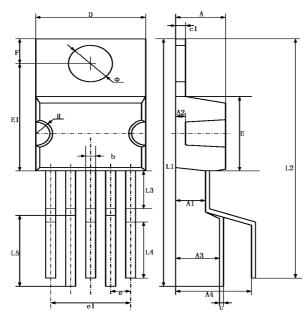
INPUT CAPACITOR C_{IN} —A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be located near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on. Selecting an input capacitor requires consulting the manufa- cturers data sheet for maximum allowable RMS ripple current. For a maximum ambient temperature of 40°C, a general guideline would be to select a capacitor with a ripple current rating of approximately 50% of the DC load current. For ambient temperatures up to 70°C, a current rating of 75% of the DC load current would be a good choice for a conservative design. The capacitor voltage rating must be at least 1.25 times greater than the maximum input voltage, and often a much higher voltage capacitor is needed to satisfy the RMS current requirements.

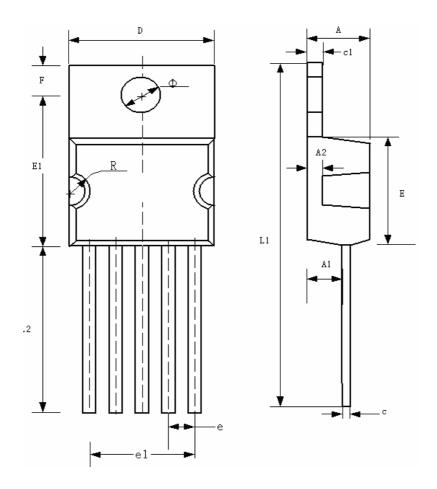
OUTPUT CAPACITOR C_{OUT} —-An output capacitor is required to filter the output and provide regulator loop stability. Low impedance or low ESR Electrolytic or solid tantalum capacitors designed for switching regulator applications must be used. When selecting an output capacitor, the important capacitor parameters are; the 100 kHz Equivalent Series esistance (ESR), the RMS ripple current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter. The output capacitor requires an ESR value that has an upper and lower limit. For low output ripple voltage, a low ESR value is needed. This value is determined by the maximum allowable output ripple voltage, typically 1% to 2% of the output voltage. But if the selected capacitor's ESR is extremely low, there is a possibility of an unstable feedback loop, resulting in an oscillation at the output.


CATCH DIODE D---Buck regulators require a diode to provide a return path for the inductor current when the switch turns off. This must be a fast diode and must be located close to the AE1509 using short leads and short printed circuit traces. Because of their very fast switching speed and low forward voltage drop, Schottky diodes provide the best performance, especially in low output voltage applications (5V and lower). Ultra fast recovery, or High-Efficiency rectifiers are also a good choice, but some types with an abrupt turnoff characteristic may cause instability or EMI problems.

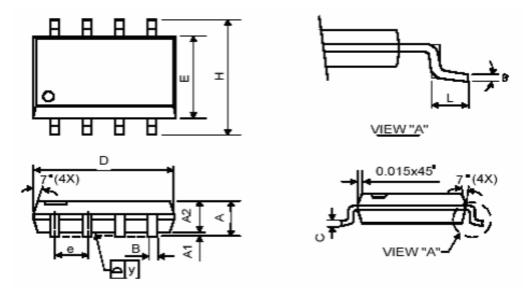
INDUCTOR SELECTION L---All switching regulators have two basic modes of operation; continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulators performance and requirements. Most switcher designs will operate in the discontinuous mode when the load current is low. The AE1509 (or any of the Simple Switcher family) can be sed for both continuous and discontinuous modes of operation. There is a formula for general applications:

L=(5 ~ 10)
$$\frac{V_o}{300 I_o}$$
 (1- $\frac{V_o}{V_N}$)mH


Package Information


Sumbal	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	4.470	4.670	0.176	0.184	
A1	0.000	0.150	0.000	0.006	
В	1.560	1.760	0.061	0.069	
ь	0.710	0.910	0.028	0.036	
С	0.310	0.530	0.012	0.021	
c1	1.170	1.370	0.046	0.054	
D	9.880	10.180	0.389	0.401	
Е	8.200	8.600	0.323	0.339	
e	1.700	TYP	0.067	TYP	
e1	6.700	6.900	0.264	0.272	
L	15.140	15.540	0.596	0.612	
L1	5.080	5.480	0.200	0.216	
L2	2.340	2.740	0.092	0.108	
V	5.600	OREF	0.220REF		

T0-220(B)


Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	4.470	4.670	0.176	0.184	
A1	2.520	2.820	0.099	0.111	
A2	1.170	1.370	0.046	0.054	
A3	4.250	4.550	0.167	0.179	
A4	8.250	8.550	0.325	0.337	
b	0.710	0.910	0.028	0.036	
с	0.310	0.530	0.012	0.021	
c1	1.170	1.370	0.046	0.054	
D	10.010	10.310	0.394	0.406	
E	8.900	9.300	0.350	0.366	
E1	12.460	12.860	0.491	0.506	
e	1.70	0TYP	0.220TYP		
el	6.700	6.900	0.264	0.272	
F	2.590	2.890	0.102	0.114	
L1	25.100	25.500	0.988	1.004	
L2	24.300	24.700	0.957	0.972	
L3	3.400	3.600	0.134	0.142	
L4	3.800	4.000	0.150	0.157	
L5	5.300	5.500	0.209	0.217	
R	0.950	1.050	0.037	0.041	
Φ	3.790	3.890	0.149	0.153	

T0-220(T)

	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
А	4.470	4.670	0.176	0.184
A1	2.520	2.820	0.099	0.111
A2	1.170	1.370	0.046	0.054
b	0.710	0.910	0.028	0.036
С	0.310	0.530	0.012	0.021
c1	1.170	1.370	0.046	0.054
D	10.010	10.310	0.394	0.406
E	8.900	9.300	0.350	0.366
E1	12.460	12.860	0.491	0.506
е	1.700	OTYP	0.220)TYP
e1	6.700	6.900	0.264	0.272
F	2.590	2.890	0.102	0.114
L1	28.700	29.100	1.130	1.146
L2	13.36	13.76	0.526	0.542
R	0.950	1.050	0.037	0.041
	3.790	3.890	0.149	0.153

SOP-8L

Symbol	Dimensions In Millimeters			Dimensions In Inches		
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	1.40	1.60	1.75	0.055	0.063	0.069
A1	0.10	-	0.25	0.040	-	0.100
A2	1.30	1.45	1.50	0.051	0.057	0.059
В	0.33	0.41	0.51	0.013	0.016	0.020
С	0.19	0.20	0.25	0.0075	0.008	0.010
D	4.80	5.05	5.30	0.189	0.199	0.209
E	3.70	3.90	4.10	0.146	0.154	0.161
е		1.27	-	-	0.050	-
Н	5.79	5.99	6.20	0.228	0.236	0.244
L	0.38	0.71	1.27	0.015	0.028	0.050
У		-	0.10	-	-	0.004
θ	00	-	80	00	-	80