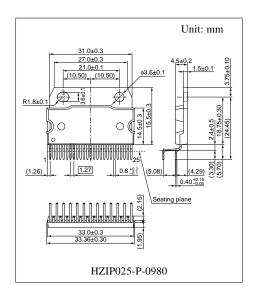
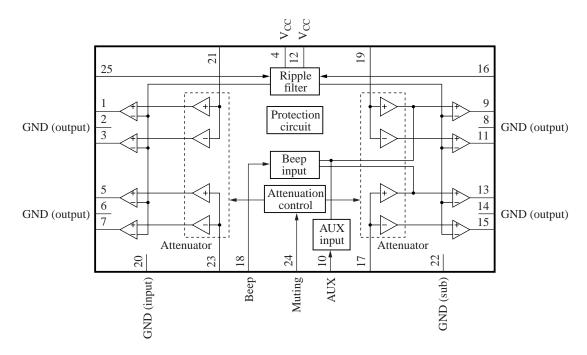
# **AN7555NZ**

# BTL output power IC for car audio

#### Overview


The AN7555NZ is an audio power IC developed as the sound output of car audio (35 W × 4-channel). It has realized the voltage gain of 40 dB based on the AN7560Z (voltage gain: 34 dB). A capacitor and resistor to stop oscillation are built in between the output pin and GND so that a space saving of set is possible. Also, it incorporates a perfect muting circuit without shock noise, so that a shock noise design under the set transient condition can be made easily when used together with its standby function. In addition, it incorporates various protection circuits to protect the IC from destruction by GND-open short circuit to ground, and power supply surge which are the important subject of power IC protection. This IC will largely contribute to a high reliability design of the equipment.

#### ■ Features


- A pattern layout in which input and output pattern do not intersect each other on single-sided printed circuit board is possible.
- Incorporating various protection circuits (temperature protection, short circuit to V<sub>CC</sub>, V<sub>CC</sub>-open short circuit to V<sub>CC</sub>, short circuit to GND, GND-open short circuit to GND, overvoltage, power supply surge, and ASO, etc.)
- Built-in standby function (shock-noise free at STB-on/ off)
- Built-in muting function (shock-noise free at Mute-on/ off)
- External components reduction
- Provided with beep sound input pin
- Equipped with auxiliary sound input pin
- Voltage gain: 40 dB (AN7560Z/AN7561Z: Voltage gain: 34 dB)

#### Applications

 Car stereo, miniature audio component, karaoke and other audio equipment



## ■ Block Diagram



## ■ Pin Descriptions

| Pin No. | Description                    | Pin No. | Description                 |
|---------|--------------------------------|---------|-----------------------------|
| 1       | Ch.4 + output                  | 14      | GND (ch.1 output)           |
| 2       | GND (ch.4 output)              | 15      | Ch.1 – output               |
| 3       | Ch.4 – output                  | 16      | Standby                     |
| 4       | Supply voltage V <sub>CC</sub> | 17      | Ch.1 input                  |
| 5       | Ch.3 + output                  | 18      | Beep input                  |
| 6       | GND (ch.3 output)              | 19      | Ch.2 input                  |
| 7       | Ch.3 – output                  | 20      | GND (input)                 |
| 8       | GND (ch.3 output)              | 21      | Ch.4 input                  |
| 9       | Ch.2 + output                  | 22      | GND (printed circuit board) |
| 10      | AUX input                      | 23      | Ch.3 input                  |
| 11      | Ch.2 – output                  | 24      | Muting                      |
| 12      | Supply voltage Vcc             | 25      | Ripple filter               |
| 13      | Ch.1 + output                  |         |                             |

Note) It is not necessary to connect capacitor and resistor for stopping the oscillation at the output terminals.

Use them after check if necessary for noise countermeasure.

2 Panasonic

## ■ Absolute Maximum Ratings

| Parameter                        | Symbol             | Rating      | Unit |
|----------------------------------|--------------------|-------------|------|
| Supply voltage *2                | V <sub>CC</sub>    | 25          | V    |
| Peak supply voltage *3           | V <sub>surge</sub> | 65          | V    |
| Supply current                   | $I_{CC}$           | 12          | A    |
| Power dissipation *4             | $P_{\mathrm{D}}$   | 59          | W    |
| Operating ambient temperature *1 | $T_{\mathrm{opr}}$ | -30 to +85  | °C   |
| Storage temperature *1           | $T_{stg}$          | -55 to +150 | °C   |

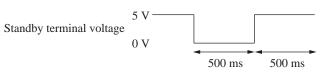
Note) \*1:  $T_a = 25$ °C except operating ambient temperature and storage temperature.

\*2: Without signal

\*3: Time = 0.2 s

\*4: Power dissipation at  $T_a = 85^{\circ}C$ 

## ■ Recommended Operating Range


| Parameter      | Symbol          | Range       | Unit |  |
|----------------|-----------------|-------------|------|--|
| Supply voltage | V <sub>CC</sub> | 8.0 to 18.0 | V    |  |

## ■ Electrical Characteristics at $V_{CC} = 13.2 \text{ V}$ , f = 1 kHz, $T_a = 25 ^{\circ}\text{C}$

| Parameter                   | Symbol           | Conditions                                                                                            | Min  | Тур  | Max | Unit    |
|-----------------------------|------------------|-------------------------------------------------------------------------------------------------------|------|------|-----|---------|
| Quiescent current           | $I_{CQ}$         | $R_g = 10 \text{ k}\Omega, R_L = 4 \Omega$                                                            | _    | 300  | 450 | mA      |
| Standby current             | I <sub>STB</sub> | $R_g = 10 \text{ k}\Omega, R_L = 4 \Omega$                                                            | _    | 1    | 10  | μА      |
| Output noise voltage *1     | V <sub>NO</sub>  | $R_g = 10 \text{ k}\Omega, R_L = 4 \Omega$                                                            | _    | 0.25 | 0.5 | mV[rms] |
| Voltage gain                | $G_{V}$          | $V_{\rm IN} = 20 \text{ mV}, R_{\rm L} = 4 \Omega$                                                    | 38   | 40   | 42  | dB      |
| Total harmonic distortion 1 | THD1             | $V_{IN} = 20 \text{ mV}, R_L = 4 \Omega$                                                              | _    | 0.05 | 0.2 | %       |
| Maximum output power        | Po               | THD = 10%, $R_L = 4 \Omega$                                                                           | 16   | 19.5 | _   | W       |
| Ripple rejection *1         | RR               | $R_L = 4 \Omega$ , $R_g = 10 k\Omega$ , $V_R = 1 V[rms]$ , $f_R = 1 kHz$                              | 55   | 65   | _   | dB      |
| Channel balance             | СВ               | $V_{IN} = 20 \text{ mV}, R_L = 4 \Omega$                                                              | _    | 0    | 1   | dB      |
| Cross-talk                  | CT               | $V_{IN} = 20 \text{ mV}, R_L = 4 \Omega, R_g = 10 \text{ k}\Omega$                                    | 60   | 70   | _   | dB      |
| Output offset voltage       | V <sub>OFF</sub> | $R_g = 10 \text{ k}\Omega, R_L = 4 \Omega$                                                            | -300 | 0    | 300 | mV      |
| Muting effect *1            | MT               | $V_{IN} = 20 \text{ mV}, R_L = 4 \Omega$                                                              | 70   | 80   | _   | dB      |
| Input impedance             | $Z_{I}$          | $V_{\rm IN} = \pm 0.3 \ V_{\rm DC}$                                                                   | 24   | 30   | 36  | kΩ      |
| Shock noise *2              | V <sub>S</sub>   | $R_{L} = 4 \ \Omega, \ R_{g} = 10 \ k\Omega, \ V_{MUTE} = 5 \ V,$ $V_{STB} = on/off, \ 50 \ Hz \ HPF$ | -100 | 0    | 100 | mV[p-0] |

Note) \*1: Measurement using a bandwidth 15 Hz to 30 kHz (12 dB/OCT) filter.

<sup>\*2:</sup> Change over the standby terminal at the time shown in the right.



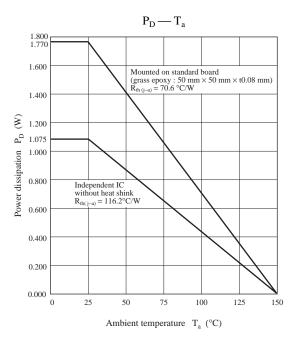
### ■ Electrical Characteristics at V<sub>CC</sub> = 13.2 V, f = 1 kHz, T<sub>a</sub> = 25°C (continued)

| Parameter                   | Symbol            | Conditions                                                                                         | Min | Тур | Max | Unit  |
|-----------------------------|-------------------|----------------------------------------------------------------------------------------------------|-----|-----|-----|-------|
| Total harmonic distortion 2 | THD2              | $V_{IN} = 10 \text{ mV}, f_{IN} = 20 \text{ kHz}, R_g = 10 \Omega,$<br>$R_I = \infty$              |     | 0.1 | 0.5 | %     |
| Mute-on threshold voltage   | MT <sub>ON</sub>  | $V_{IN} = 20 \text{ mV}, R_I = 4 \Omega$                                                           | 4   |     |     | V     |
|                             | On                | n, , E                                                                                             | -   |     | 0.0 | · · · |
| Mute-off threshold voltage  | MT <sub>OFF</sub> | $V_{\rm IN} = 20 \text{ mV}, R_{\rm L} = 4 \Omega$                                                 |     |     | 0.8 | V     |
| Cutoff frequency            | $f_C$             | $V_{IN} = 20 \text{ mV}, R_L = 4 \Omega,$                                                          | 20  | 40  | _   | kHz   |
|                             |                   | $V_{IN} = 20 \text{ mV}, R_L = 4 \Omega,$<br>$G_V = -1 \text{ dB } (0 \text{ dB: } 1 \text{ kHz})$ |     |     |     |       |

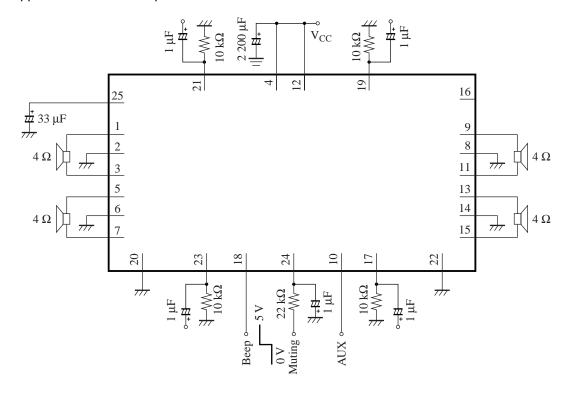
#### Design reference data

Note) The characteristic values below are theoretical values for designing and not guaranteed.

| Parameter             | Symbol             | Conditions                                                                                      | Min | Тур | Max | Unit |
|-----------------------|--------------------|-------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Maximum output power  | P <sub>Omax</sub>  | Max. power, $R_L = 4 \Omega$                                                                    | _   | 28  | _   | W    |
|                       | P <sub>O2</sub>    | $V_{CC} = 14.4 \text{ V}, \text{ THD} = 10\%, R_L = 4 \Omega$                                   | _   | 21  | _   |      |
|                       | P <sub>Omax2</sub> | $V_{CC} = 14.4 \text{ V, max. power, } R_L = 4 \Omega$                                          | _   | 34  | _   |      |
| Power band width      | $f_{PL}$           | $V_{CC} = 14.4 \text{ V}, \text{ THD} = 1\%, R_L = 4 \Omega,$<br>PoL = -3  dB  (1  kHz; 0  dB)  |     | 10  |     | Hz   |
|                       | f <sub>PH</sub>    | $V_{CC} = 14.4 \text{ V}, \text{ THD} = 1\%, R_L = 4 \Omega,$<br>PoH = -3  dB  (1  kHz:  0  dB) |     | 18  |     | kHz  |
| STB threshold voltage | V <sub>STB1</sub>  | $R_g = 10 \text{ k}\Omega, R_L = 4 \Omega, STB \rightarrow ACT$                                 | _   | 2.2 | _   | V    |
|                       | V <sub>STB2</sub>  | $R_g = 10 \text{ k}\Omega, R_L = 4 \Omega, ACT \rightarrow STB$                                 |     | 1.5 |     |      |


#### ■ Usage Notes

- Always attach an outside heat sink to use the AN7555NZ. In addition, the outside heat sink must be fastened onto a chassis for use.
- 2. Connect the radiation fin to the GND potential.
- Prevent short circuit to V<sub>CC</sub> and short circuit to GND, and load short-circuit although the protection circuits for short circuit to V<sub>CC</sub> and ASO are built-in.
- 4. The thermal protection circuit gets actuated when  $T_j$  = approx. 150°C, but it is automatically reset when the chip temperature drops below the above set level.
- 5. The overvoltage protection circuit starts the protection operation at  $V_{CC}$  = approx. 20 V.
- 6. Take into consideration the heat radiation design particularly when  $V_{CC}$  is set high.
- 7. When the beep sound function is not used, connect to GND the beep sound input pin.
- 8. Don't down below -0.3 V for the beep sound input pin.
- 9. When the AUX function is not used, open the AUX input pin.
- 10. Connect to signal GND of pre-stage amplifier only for the signal source ground.
- There are the possibility of breakdown for the following conditions.
  - 1. Reverse connection of the power supply pin and the GND pin.
  - 2. Connection of the power supply between output pins at open condition of the power supply pin and the GND pin.
  - 3. Short circuit to GND of output pin when the GND pin is open.
  - Short circuit to GND of above the three output pins at the same time with a shorting resistor which does not operate the protection circuit.
  - 5. Short circuit to GND of above the plus and minus output pins at the same time with a shorting resistor which does not operate the protection circuit.
  - 6. Short circuit to ground with shorting the RF pin and the output pin.


4 Panasonic

#### ■ Technical Information

 $\bullet$  P<sub>D</sub> — T<sub>a</sub> curves of HZIP025-P-0980



## ■ Application Circuit Example

