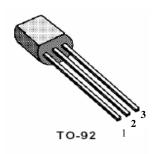


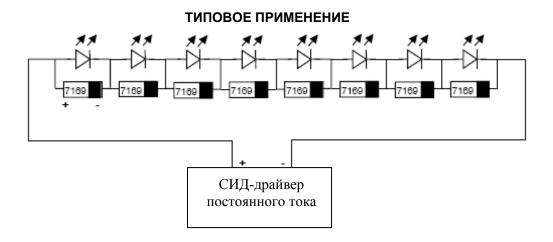
IL7169


Интегральная микросхема защиты светоизлучающих диодов

IL7169 (зарубежный аналог AMC7169 фирмы ADDtek) - двухвыводная ИС защиты светоизлучающих диодов (СИД) с низким падением напряжения, рассчитанная на 500 мА тока шунтирования. Низкий рабочий ток в режиме контроля и высокий ток шунтирования в задающем режиме.

IL7169 предназначена для параллельного соединения с мощным СИД. ИС шунтирует управляющий ток в случае разомкнутой цепи СИД, а также шунтирует управляющий ток при обратном включении СИД.

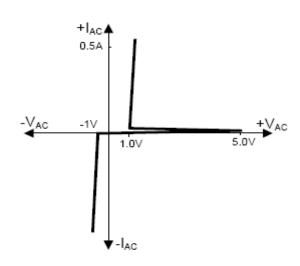
ОСОБЕННОСТИ


- Задающее напряжение защиты 5В
- Ток шунтирования 500 мА
- Падение напряжения на шунте 1В
- Защита от статэлектричества 8 кВ

ПРИМЕНЕНИЯ

- Светодиодное освещение
- Светодиодная подсветка для ЖК телевизоров/ мониторов
- Мощная защита СИД

- 1. Анод
- 2. Не задействован
- 3. Катод


ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ РЕЖИМОВ ЭКСПЛУАТАЦИИ

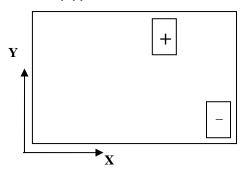
Входное напряжение, V _{AC}	40B
Максимальная рабочая температура перехода, Т」	150°C
Температура хранения	от -65°C до 150°C

IL7169

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА

РЕКОМЕНДУЕМЫЕ РАБОЧИЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

Параметр	Обозначение	Мин.	Тип.	Макс	Единица
	параметра				измер.
Входное напряжение	V_{AC}			38	В
Ток шунта	I _{BP}			500	мА
(с соответствующим теплоотводом)					
Обратный ток	I _R			500	мА
Рабочий диапазон температуры	T _A	-40		85	°C
окружающей среды					
Рабочая температура перехода	T _J			125	°C


ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

 T_A =25 °C, если другое не оговорено, и только для характеристик постоянного тока. (Использованы методы импульсного тестирования с большой скважностью, что поддерживает температуру перехода и температуру корпуса равными температуре окружающей среды.)

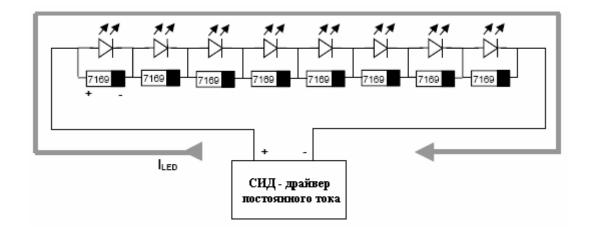
Параметр	Обозначение	Режим измерения	Мин.	Тип.	Макс.	Единица
	параметра					измер.
Задающее напряжение	V_{TR}	$V_{AC} = (4,65-5,15) B,$	4.65	4.9	5.15	В
		$I_{AC} \leq 50 \text{ MA},$				
Падение напряжения	V_{DO}	I _{AC} =350mA		1	1.2	В
Обратное падение	V_{RDO}	I _R = 350mA		1.1	1.3	В
напряжения						
Ток в режиме контроля	I _{MAC}	$V_{AC} = 3.5V$		100	150	мкА
Ток переключения	I _{BAC}				20	мА

РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК

Размер кристалла $1,47 \times 0,84 \text{ мм}^2$

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

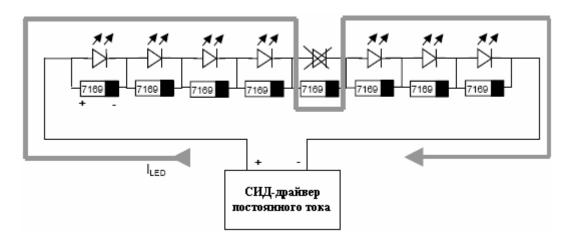
• Диаметр пластины	.100 \pm 0.5 мм
• Толщина пластины	280 ± 20 мкм
• Ширина скрайберной дорожки	100 мкм
• Пассивация	ФСС
• Металлизация: планарная сторона.	
обратная сторона	отсутствует

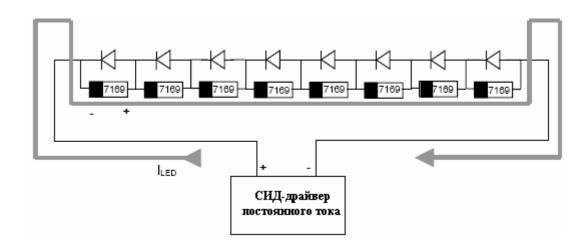

КООРДИНАТЫ КОНТАКТНЫХ ПЛОЩАДОК

Площадка	Размер (µm)	X (µm)	Y (µm)
+	100 x 205	892.5	492.5
-	100 x 205	1282.5	87.5

ИНФОРМАЦИЯ ПО ПРИМЕНЕНИЮ

Режим контроля:


Прямое падение напряжения (V_f) у всех СИД должно быть менее 4B, в то время как напряжение включения IL7169 – 5B. У всех IL7169 в режиме контроля ток потребления от системы на уровне микроампер.


Запускающий режим:

В случае повреждения СИД или проблем с межсоединениями в цепи может произойти обрыв. Когда это происходит, падение напряжения на смежной IL7169 начинает возрастать и запускает ее по достижении 5В. Падение напряжения на IL7169 составит примерно 1В и ток светодиода I_{LED} будет шунтироваться на следующий СИД. Все светодиоды будут исправно работать за исключением поврежденного, который шунтируется.

Режим обратного включения:

Если цепочка СИД находится в обратном включении к драйверу, то включается встроенный диод защиты от обратного включения IL7169 для шунтирования тока. Таким образом, обратное напряжение на СИД уменьшается и предупреждает повреждение СИД.

Система менеджмента качества проектирования, разработки и производства дискретных полупроводниковых приборов и интегральных микросхем соответствует требованиям СТБ ИСО 9001-2001

УП «Завод Транзистор» 220108, г. Минск, ул. Корженевского, 16, Отдел маркетинга: тел./факс (10-37517) 212-59-32 E-mail: market@transistor.com.by http://www.transistor.by