
Технические условия: ОЖ0.464.267 ТУ

Предназначены для работы в термостойкой скважинной геофизической аппаратуре при температурах до 250 $^{\circ}$ C.

Конструкция: цельнотанталовые, герметизированные.

Обозначение	Размеры, мм				Масса, г
корпуса	D	Η	hmax	đ	макс.
1	4,8	18	6,5	0,6	3,5
2	6,0	20	5,0	0,0	6,5
3	7,5	22	5,0	0,8	10

Обозначение корпуса							
С _{ном} ,	U _{ном} , B						
мкФ	16	25	50	125			
2,2				1			
4,7				1			
10				2			
15			1				
22				3			
33			2				
68		2	3				
150		3					
220	3						

Номинальное напряжение 16...125 В Номинальная емкость 2,2...220 мкФ Допускаемое отклонение емкости: $\pm 10\%, \pm 20\%, \pm 30\%$ Тангенс угла потерь, макс 30% Ток утечки, макс (0,002 \cdot C_{ном} \cdot U_{ном}+1) мкА Интервал рабочих температур -10...+250 $^{\circ}$ C

Обозначение при заказе: конденсатор К52-13 - 125 B - 22 мкФ ± 20% - ОЖ0.464.267 ТУ.

Конденсаторы должны быть стойкими к воздействию механических факторов, приведенных в таблице:

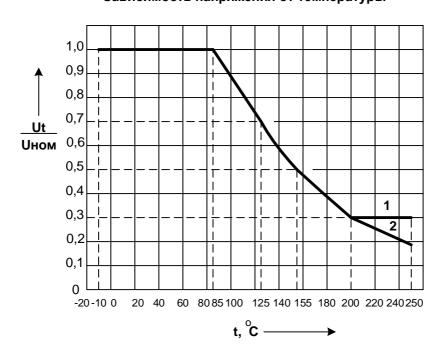
Воздействующий фактор и его характеристики	Значение
Воздействующий фактор и его характеристики	характеристики
Синусоидальная вибрация:	
диапазон частот, Гц	1-500
амплитуда ускорения, м⋅с ⁻² (g)	100 (10)
Механический удар:	
одиночного действия:	
пиковое ударное ускорение, м⋅с ⁻² (g)	1500 (150)
многократного действия:	
пиковое ударное ускорение, м·с ⁻² (g)	400 (40)

Наработка (в зависимости от рабочей температуры и величины рабочего напряжения)

до 10000 ч

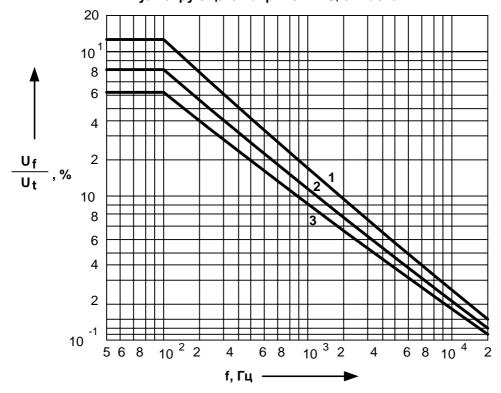
Интенсивность отказов (в течение наработки при нормальных климатических условиях и электрических режимах, допускаемых ТУ)

5·10⁻⁸ 1/4.


Срок сохраняемости, мин

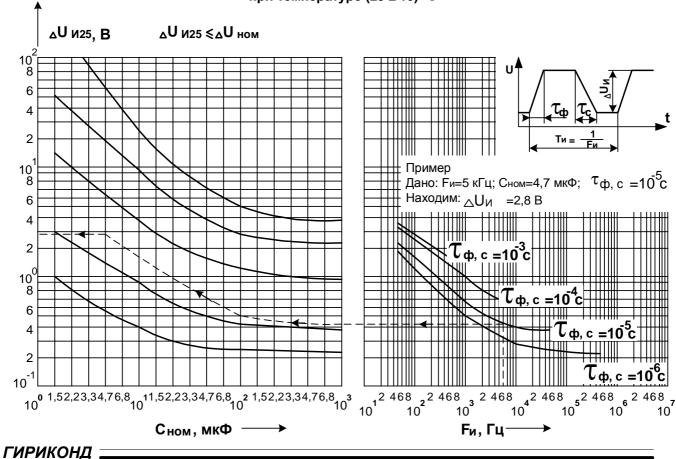
10 лет

Климатическое исполнение


УХЛ 5.1 по ГОСТ 15150-69

Зависимость напряжения от температуры

- 1. для конденсаторов на $U_{\text{ном}} = 16$; 25 B;
- 2. для конденсаторов на $U_{\text{ном}} = 50$; 125 В.


Зависимость допускаемой амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты

- 1. для конденсаторов на $U_{_{HOM}}$ =16; 25 B; 2. для конденсаторов на $U_{_{HOM}}$ = 50 B;
- 3. для конденсаторов на $U_{_{\mathit{HOM}}}$ = 125 В

Зависимость допускаемого размаха импульсного напряжения ΔU_{N25} от частоты следования импульсов $F_{\rm u}$, длительности наименьшего из временных интервалов, соответствующих

фронту au_{φ} или спаду импульса au_{c} и номинальной емкости $extbf{C}_{\text{ном}}$ при температуре (25 \pm 10) °C

