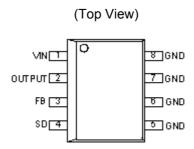


150KHZ 2A PWM Buck DC/DC Converter

■ FEATURES

- Output voltage: 3.3V, 5V, 12V and adjustable output version
- Adjustable version output voltage range, 1.23V to 18V ± 4%
- 150KHz ±15% fixed switching frequency
- Voltage mode non-synchronous PWM control
- Thermal-shutdown and current-limit protection
- ON/OFF shutdown control input
- Operating voltage can be up to 22V
- Output load current: 2A
- SOP8L packages
- Low power standby mode
- Built-in switching transistor on chip


■ TYPICAL APPLICATION

- Simple High-efficiency step-down regulator
- On-card switching regulators
- Positive to negative converter

■ GENERAL DESCRIPTION

The LSP3125 series are monolithic IC designed for a step-down DC/DC converter, and own the ability of driving a 2A load without additional transistor. It saves board space. The external shutdown function can be controlled by logic level and then come into standby mode. The internal compensation makes feedback control having good line and load regulation without external design. Regarding protected function, thermal shutdown is to prevent over temperature operating from damage, and current limit is against over current operating of the output switch. If current limit function occurs and FB is down below 0.5V, the switching frequency will be reduced. The LSP3125 series operates at a switching frequency of 150KHz thus allow smaller sized filter components than what would be needed with lower frequency switching regulators. Other features include a guaranteed ± 4% tolerance on output voltage under specified input voltage and output load conditions, and ± 15% on the oscillator frequency. The output version included fixed 3.3V, 5V, 12V, and an adjustable type. The chips are available in a standard SOP8L package.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Name	No.	Description			
VIN	1	Operating Voltage Input			
OUTPUT	2	Switching Output			
FB	3	Output Voltage Feedback Control			
SD	4	On/Off Shutdown			
GND	5	Ground			
GND	6	Ground			
GND	7	Ground			
GND	8	Ground			

1/9 Rev1.0

150KHZ 2A PWM Buck DC/DC Converter

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Value	Unit	
Supply Voltage	+24	V	
On/Off Pin Input Voltage	-0.3 to +18	V	
Feedback Pin Voltage	-0.3 to +18	V	
Output Voltage to Ground	-1	V	
Power Dissipation	Internally Limited	W	
Storage Temperature	-65 to +150		
Operating Temperature	-40 to +125		
Operating Voltage	+4.5 to +22	V	

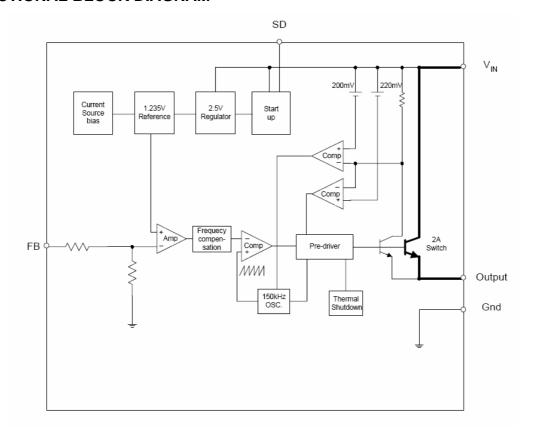
ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{IN} =12V for 3.3V, 5V and adjustable version and V_{IN} =18V for the 12V version. I_{LOAD} = 0.5A)

Parameter		Symbol	Test Co	nditions	Min.	Тур.	Max.	Unit	
Feedback Bias Current		I _{FB}	V _{FB} = 1.3V (Adjustable Version Only)			-10	-50 -100	nA	
Oscillator Frequency		F _{osc}			127 110	150	173 173	kHz	
Short Circuit Oscillator Frequency		F _{CSP}	When Current Limit Occur and V _{FB} < 0.5V, T _A =25°C		10	30	50	kHz	
Saturation Voltage		V_{SAT}	I_{OUT} = 2A, No Outside Circuit , V_{FB} = 0V force drive on			1.25	1.4 1.5	V	
Maximum Du	ity Cycle(On)	DC	V _{FB} = 0V force drive on				100	%	
Minimum Du	ty Cycle(Off)		$V_{FB} = 12V fc$	V _{FB} =12V force drive off 0				70	
C			Peak Current		3.6		6.9	Α	
Current Limit		I_{CL} No Outside Circuit , $V_{FB} = 0V$ force drive on			3.4		7.5		
Output=0	Output Leakage	ال	No Outside Circuit , V _{FB} = 12V force drive off				-50	μΑ	
Output=-1	Current		V _{IN} = 22V				-30	mA	
Quiescen	nt Current	ΙQ	V_{FB} = 12V force drive off			5	10	mA	
Standby Quiescent Current		I _{STBY}	ON/OFF Pin=5V,V _{IN} = 22V			70	200 250	μΑ	
ON/OFF Pin Logic Input		V_{IL}	Low (Regulator ON)			1.3	0.6	V	
Threshold Voltage		V_{IH}	High (Regulator OFF)		2.0	1.5		V	
ON/OFF Pin Input Current		ΙL	V _{LOGIC} =0.5V(ON)				-5		
ON/OFF Pin Logic Input Current		I _H	V _{LOGIC} =2.5V(OFF)				-15	μA	
Thermal Resistance		JC	SOP8L	Junction to Case		15			
Thermal Resistance with Copper Area of Approximately 3 in ²		JA	SOP8L	Junction to Ambient		70		/W	

2/9

150KHZ 2A PWM Buck DC/DC Converter


ELECTRICAL CHARACTERISTICS(CONTINUED)

(Unless otherwise specified, V_{IN} =12V for 3.3V, 5V and adjustable version and V_{IN} =18V for the 12V version. I_{LOAD} = 0.5A)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Output			4.5V ≤V _{IN} ≤22V	1.193		1.267	
Feedback	LSP3125-ADJ	V_{FB}	0.2A ≤I _{LOAD} ≤2A V _{OUT} Programmed for 3V	1.18	1.23	1.28	V
Efficiency		η	V_{IN} =12V, I_{LOAD} = 2A	75			%
Output	I SD3125 3 3V	V _{OUT}	4.5V ≤V _{IN} ≤22V	3.168	3.3	3.432	V
Feedback		LSP3125-3.3V		0.2A ≤I _{LOAD} ≤2A	3.135	3.3	3.465
Efficiency	-LOI 3123-3.3V	η	V_{IN} =12V, I_{LOAD} = 2A	78			%
Output		W	7V ≤V _{IN} ≤22V	4.8	5	5.2	V
Feedback	LSP3125-5.0V	V_{OUT}	0.2A ≤I _{LOAD} ≤2A	4.75	5	5.25	
Efficiency		η	V _{IN} =12V, I _{LOAD} = 2A	83			%
Output Feedback	L OD2405 40V	V _{OUT}	15V ≤V _{IN} ≤22V	11.52	12	12.48	V
reeuback	LSP3125-12V		0.2A ≤I _{LOAD} ≤2A	11.4		12.6	
Efficiency		η	V _{IN} =15V, I _{LOAD} = 2A	90			%

Specifications with boldface are for full operating temperature range, the other type are for T_J=25°C

FUNCTIONAL BLOCK DIAGRAM

3/9

150KHZ 2A PWM Buck DC/DC Converter

■ FUNCTION DESCRIPTION

Pin Description

+VIN

This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be presented at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.

Ground

Circuit Ground

Output

Internal Switch. The voltage at this pin switches between ($+V_{IN}-V_{SAT}$) and approximately -0.5V, with a duty cycle of approximately V_{OUT}/V_{IN} . To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be minimized.

Feedback

Sense the regulated output voltage to complete the feedback loop.

SD

Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 150uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of 18V) shuts the regulator down. If this shutdown feature is not needed, the SD pin can be wired to the ground pin.

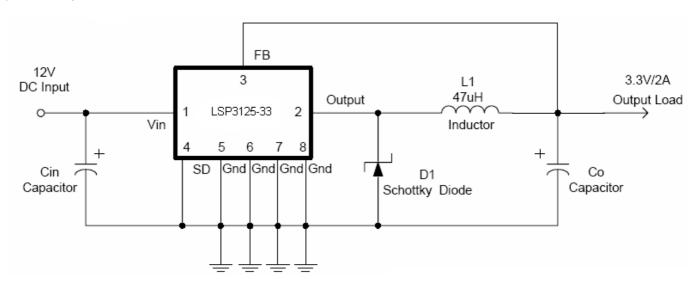
Thermal Considerations

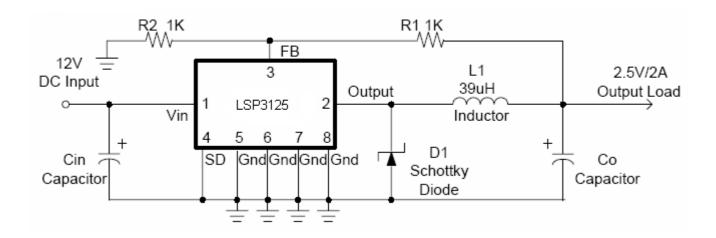
The SOP8L package needs a heat sink under most conditions. The size of the heatsink depends on the input voltage, the output voltage, the load current and the ambient temperature. The LSP3125 junction temperature rises above ambient temperature for a 2A load and different input and output voltages. The data for these curves was taken with the LSP3125(SOP8L package) operating as a buck-switching regulator in an ambient temperature 25 (still air). These temperature increments are all approximate and are affected by many factors. Higher ambient temperatures requires more heat sinker.

For the best thermal performance, wide copper traces and generous amounts of printed circuit board copper should be used in the board layout. (One exception is the output (switch) pin, which should not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

Package thermal resistance and junction temperature increments are all approximate. The increments are affected by a lot of factors. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed circuit copper area, copper thickness, single or double-sided, multi-layer board and the amount of solder on the board.

The effectiveness of the PC board to dissipate heat also depends on the size, quantity and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PC board and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.


4/9 Rev1.0


150KHZ 2A PWM Buck DC/DC Converter

■ TYPICAL APPLICATION CIRCUIT

(1) Fixed Output Version Circuit

(2) Adjustable Version Circuit

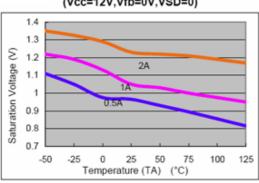
5/9

77

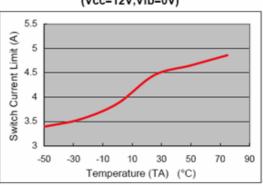
76 75

Liteon Semiconductor Corporation LSP3125

150KHZ 2A PWM Buck DC/DC Converter

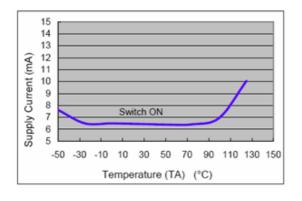

TYPICAL CHARACTERISTICS

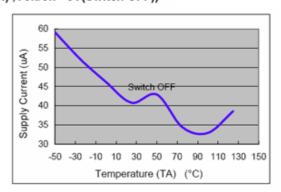
Efficiency v.s. Temperature (Vin=12V, Vout=5V, Io=2A) 86 85 84 83 82 8 81 Efficiency 80 79 78


Efficiency v.s. Temperature (Vin=12V, Vout=3.3V, Io=2A) 81 80 79 78 8 77 Efficiency 76 75 74 -50 -30 -10 70 90 110 130 150 10 30 50 Temperature (TA) (°C)

Saturation Voltage v.s. Temperature (Vcc=12V,Vfb=0V,VSD=0)

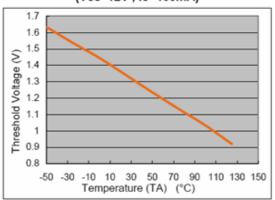
-50 -30 -10 10 30 50 Temperature (TA) (90)110 130 150

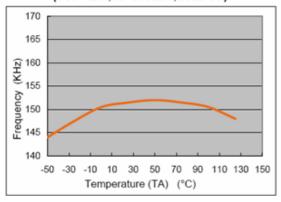



Switch Current Limit v.s. Temperature (Vcc=12V,Vfb=0V)

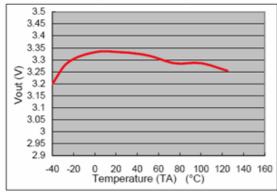
Supply Current v.s. Temperature (Vcc=12V, No Load, Von/off =0V(Switch ON), Von/off =5V(Switch OFF))

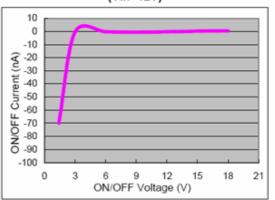
6/9

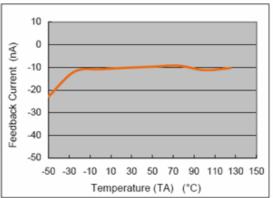



150KHZ 2A PWM Buck DC/DC Converter

TYPICAL CHARACTERISTICS(CONTINUED)

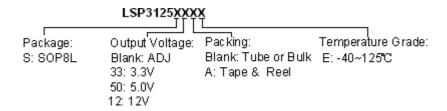

Threshold Voltage v.s. Temperature (Vcc=12V, lo=100mA)


Frequency v.s. Temperature (Vcc=12V, Io=500mA, Vout=5V)

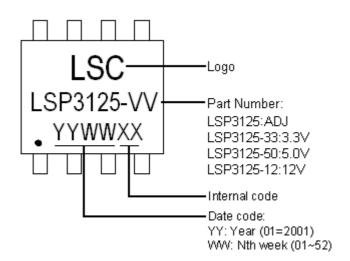

Output Voltage v.s. Temperature (Vin=12V, lo=2A)

ON/OFF Current v.s. ON/OFF Voltage (Vin=12V)

Feedback Current v.s. Temperature (Vcc=12V, Vout=5V, Vfb=1.3V)


Rev1.0

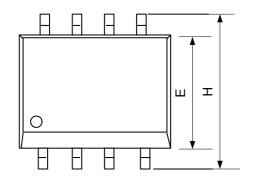
7/9

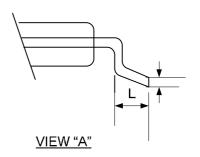


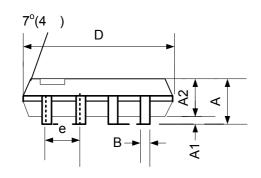
150KHZ 2A PWM Buck DC/DC Converter

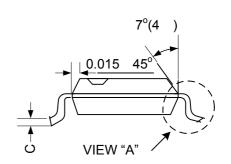
ORDERING INFORMATION

MARKING INFORMATION




8/9




150KHZ 2A PWM Buck DC/DC Converter

PACKAGE INFORMATION

Symbol	Dime	ensions In Millim	eters	Dimensions In Inches			
	Min.	Nom.	Max.	Min.	Nom.	Max.	
Α	1.35	1.60	1.75	0.053	0.063	0.069	
A1	0.10		0.25	0004		0.010	
A2	1.35	1.45	1.55	0.053	0.057	0.061	
В	0.33	0.41	0.51	0.013	0.016	0.020	
С	0.19	0.20	0.25	0.0075	0.008	0.010	
D	4.80	4.90	5.00	0.192	0.196	0.200	
E	3.80	3.90	4.00	0.148	0.154	0.160	
е	1.27TYP.			0.050	TYP.		
Н	5.80	5.99	6.30	0.228	0.236	0.248	
L	0.38	0.71	1.27	0.015	0.028	0.050	
θ	0°		8°	0°		8°	

UPDATE HISTORY

Descriptions Date Version

> Rev1.0 9/9