ELECTRONICS, INC
(973) 748-5089

NTE7203
 Integrated Circuit 60W Hi-Fi Audio Power Amplifier with Mute/Stand-By

Description:

The NTE7203 is a monolithic integrated circuit in a 7-Lead Staggered SIP type package designed for use as an audio class AB amplifier in TV or Hi-Fi applications. Thanks to the wide voltage range and high out current capability, the NTE7203 is able to supply the highest power into both 4Ω and 8Ω loads even in the presence of poor supply regulation.

Features:

- Supply Voltage Range up to $\pm 25 \mathrm{~V}$
- Split Supply Operation
- High Output Power (up to 60W Music Power)
- Low Distortion
- Mute/Stand-By Function
- No Switch ON/OFF Noise
- AC Short Circuit Protection
- Thermal Shutdown
- ESD Protection

Absolute Maximum Ratings:

Output Peak Current (Internally Limited), Io . 6A

Thermal Resistance, Junction-to-Case, $\mathrm{R}_{\mathrm{thJC}}$
$2.5^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics: $\quad\left(\mathrm{G}_{\mathrm{V}}=32 \mathrm{~dB}, \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Supply Range	V_{S}		± 6	-	± 25	V
Total Quiescent Current	I_{q}	$\mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V}$	20	40	70	mA
Input Bias Current	I_{b}	$\mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V}$	-	-	± 0.5	$\mathrm{\mu A}$
Input Offset Voltage	V_{OS}	$\mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V}$	-	-	± 15	mV
Input Offset Current	I_{OS}	$\mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V}$	-	-	± 200	nA

Electrical Characteristics (Cont'd): ($\mathrm{G}_{\mathrm{V}}=32 \mathrm{~dB}, \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Test Conditions		Min	Typ	Max	Unit
Music Output Power (Note 1)	P_{O}	$\mathrm{V}_{\mathrm{S}}= \pm 22.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{~d}=10 \%, \mathrm{t}=1 \mathrm{~s}$		50	60	-	W
Output Power (Continuous RMS)	P_{O}	$\mathrm{d}=10 \%$	$\mathrm{R}_{\mathrm{L}}=4 \Omega$	35	40	-	W
			$\mathrm{R}_{\mathrm{L}}=8 \Omega$	-	22	-	W
			$\mathrm{V}_{\mathrm{S}}= \pm 22.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	30	33	-	W
		$\mathrm{d}=1 \%$	$\mathrm{R}_{\mathrm{L}}=4 \Omega$	-	32	-	W
			$\mathrm{R}_{\mathrm{L}}=8 \Omega$	-	17	-	W
			$\mathrm{V}_{\mathrm{S}}= \pm 22.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	-	28	-	W
Total Harmonic Distortion	d	$\begin{aligned} & \begin{array}{l} \mathrm{Po}=0.1 \text { to } 20 \mathrm{~W}, \\ \mathrm{f}=100 \mathrm{~Hz} \text { to } 15 \mathrm{kHz} \end{array} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=4 \Omega$	-	0.1	0.7	\%
			$\mathrm{V}_{\mathrm{S}}= \pm 22 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	-	0.1	0.5	\%
Slew Rate	SR			3	5	-	V/ $/ \mathrm{s}$
Open Loop Voltage Gain	G_{V}			-	80	-	dB
Total Input Noise	e_{N}	A Curve		-	2	-	$\mu \mathrm{V}$
		$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz		-	3	10	$\mu \mathrm{V}$
Input Resistance	R_{i}	$\mathrm{f}=100 \mathrm{~Hz}, \mathrm{~V}_{\text {ripple }}=1 \mathrm{~V}_{\text {RMS }}$		500	-	-	$\mathrm{k} \Omega$
Supply Voltage Rejection	SVR			40	50	-	dB
Thermal Shutdown	Ts			-	145	-	${ }^{\circ} \mathrm{C}$
Mute/Stand-By Function (Ref. - V_{S})							
Stand-By - Threshold	$\mathrm{V} \mathrm{T}_{\text {ST-BY }}$			1.0	1.8	-	V
Play Threshold	$\mathrm{V}_{\text {PLAY }}$			-	2.7	4.0	V
Quiescent Current at Stand-By	$\mathrm{I}_{\mathrm{q} \text { ST-BY }}$	$\mathrm{V}_{\text {Pin3 }}=0.5 \mathrm{~V}$		-	1	3	mA
Stand-By Attenuation	$\mathrm{AT}_{\text {ST }} \mathrm{BY}$			70	90	-	dB
Pin3 Current at Stand-By	$\mathrm{IPin3}$			-	-1	± 10	$\mu \mathrm{A}$

Note 1. Music Power is (according to the IEC clauses n.268-3 of Jan '83) the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of nonlinearity) 1 sec after the application of a sinusoidal input signal of frequency 1 kHz .

According to this definition our method of measurement comprises the following steps:

1. Set the voltage supply at the maximum operating value -10%.
2. Apply a input signal in he form of a 1 kHz tone burst of 1 sec duration; the repetition period of the signal pulses is $>60 \mathrm{sec}$.
3. The output voltage is measured 1 sec from the start of the pulse.
4. Increase the input voltage until the output signal show a THD $=10 \%$.
5. The music power is then $\mathrm{V}^{2}{ }_{\text {out }} / R 1$, where $\mathrm{V}_{\text {out }}$ is the output voltage measured in the condition of Step 4 an R1 is the rated load impedance.
The target of this method is to avoid excessive dissipation in the amplifier.

	7 Non-Invert Input (Play)
	6 Inverting Input
	5 Non-Invert Input (Mute)
A	$4+\mathrm{V}_{\mathrm{S}} / \mathrm{Tab}$
B	3 Stand-By/Mute
	$2+V_{S}$
	1 Output

