

6 + 6W STEREO AMPLIFIER WITH MUTING

1 FEATURES

- WIDE SUPPLY VOLTAGE RANGE
- HIGH OUTPUT POWER 6+6W @ $V_S=20V$, $R_L = 8\Omega$, THD=10%
- MUTE FACILITY (POP FREE) WITH LOW CONSUMPTION
- AC SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

2 DESCRIPTION

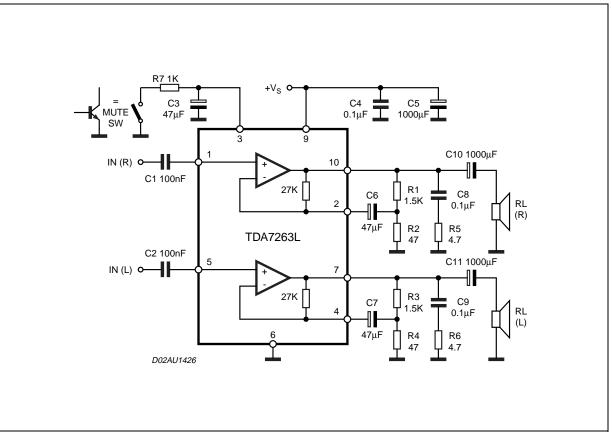

The TDA7263L is class AB dual audio power amplifier assembled in Single IN Line 10 pins package, specially designed for high quality sound application as HI-FI music centers and stereo TV sets.

Figure 1. Package

Table 1. Order Codes

Part Number	Package
TDA7263L	SIP10

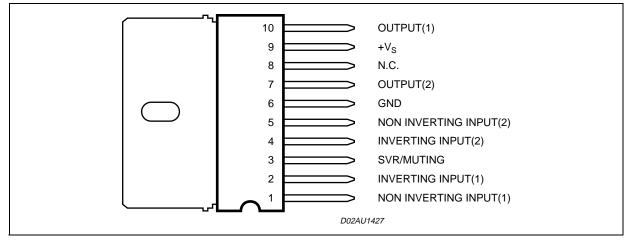


Figure 2. Block Diagram

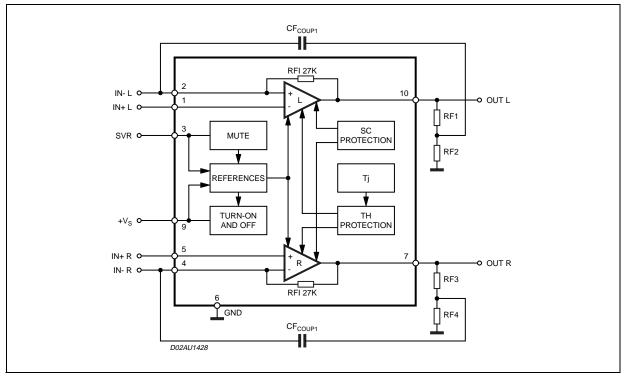

Symbol	Parameter	Value	Unit
Vs	Supply Voltage without Load	30	V
Ι _Ο	Output Peak Current (repetitive f >20Hz)	1.7	А
lo	Output Peak Current (non repetitive, t = 100µs)	2	А
Ptot	Total Power Dissipation (T _{case} = 70°C)	8	W
Т _{ор}	Operating Temperature Range	0 to 70	°C
T _{stg} ,Tj	Storage & Junction Temperature	-40 to 150	°C

Table 2. Absolute Maximum Ratings

Figure 3. Pin Connection (Top view)

Table 3. Thermal Data

I	Symbol	Parameter	Value	Unit
I	R _{th j-case}	Thermal resistance junction to case Max	9	°C/W

Table 4. ELECTRICAL CHARACTERISTCS


(Refer to the stereo test and application circuit, $V_S = 20V$; $R_L = 8\Omega$; $G_v = 30dB$; f = 1KHz; $T_{amb} = 25^{\circ}C$ unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		10		24	V
Vo	Quiescent Output Voltage			9.5		V
Р ^I	Total Quiescent Current			70	95	mA
Po	Output Power (RMS)	d = 10%; T _{amb} = 85°C	5	6		W
		d = 1%	4	5		W
d	Total Harmonic Distortion	$P_O = 1W$, f = 1kHz		0.03	0.3	%
		$f = 100Hz$ to 10KHz; $P_0 = 0.1$ to 3W			0.5	
Ст	Cross Talk	R _S = 10K&; f = 1KHz		70		dB
		R _S = 10K&; f = 10KHz		60		dB
RI	Input Resistance		100	200		KΩ
fL	Low Frequency Roll-off (-3dB)			40		Hz
f _H	High Frequency Roll-off (-3dB)			80		KHz
e _N	Total Input Noise Voltage	A Curve; $R_S = 10K\Omega$		1.5		mV
		f = 22Hz to 22KHz; $R_S = 10K\Omega$		3	10	V
SVR	Supply Voltage Rejection (each channel)	$R_{S} = 10K\Omega; f = 100Hz; V_{r} = 0.5V$	45	60		dB
Тj	Thermal Shutdown Junction Temperature			145		°C
MUTE FU	NCTION					
VT _{MUTE}	Mute Threshold		1	1.6		V
VT _{PLAY}	Play Threshold			4.5		V
ATT _{AM}	Mute Attenuation		70	100		dB
IqMUTE	Quiescent Current @ Mute			7	10	mA

3 TYPICAL CHARACTERISTICS

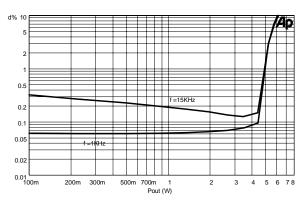
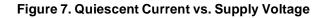
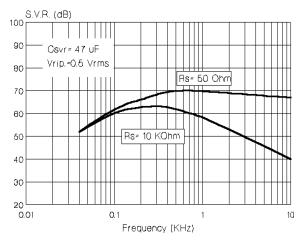
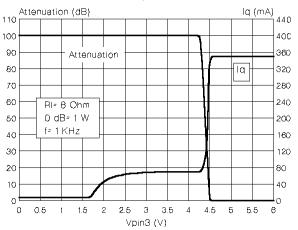

(referred to the typical Application Circuit, $V_S = 20V$, $R_L = 8\Omega$, unless otherwise specified)

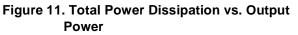
Figure 5. Output Power vs. Supply Voltage

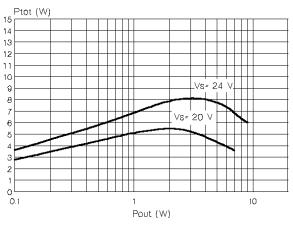


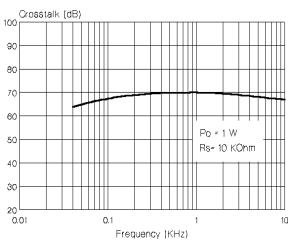
<u>/</u>۲

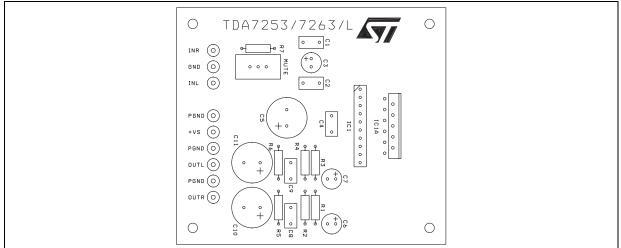

Figure 6. Distortion vs. Output Power

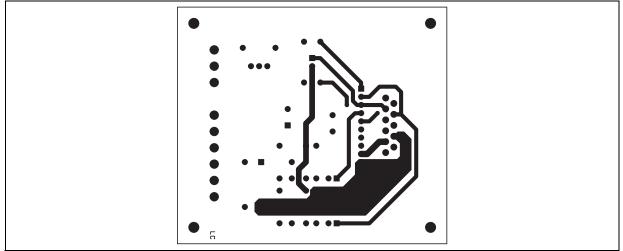

lq (mA) Ta= 70 oC Ta= 25 oC $\forall s (\forall)$











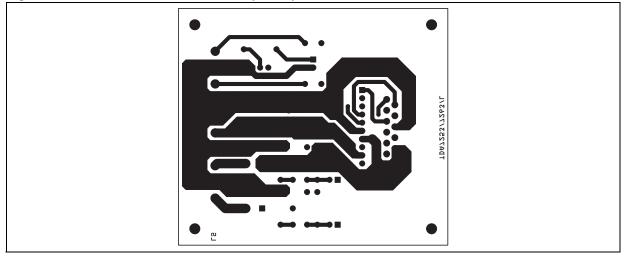

Figure 12. PC Board Component Layout

Figure 13. Evaluation Board Top Layer Layout

Figure 14. Evaluation Board Bottom Layer Layout

4 APPLICATION SUGGESTION

The recommended values of the components are those shown on the typical application circuit. Different values can be used; the following table can help the designer.

Component	Recomm. Value	Purpose Larger Than		Smaller Than	
R1 and R3	1.5KΩ	Close loop gain setting (*)	Increase of gain	Decrease of gain	
R2 and R4	47Ω	Close loop gain setting (*)	Decrease of gain	Increase of gain	
R5 and R6	4.7Ω	Frequency stability	Danger of oscillations		
C1 and C2	100nF	Input DC decoupling	Higher SVR	Higher low frequency cutoff	
C3	47μF	- Ripple Rejection - Mute time constant	Increase of the Switch-on time	- Degradation of SVR - Worse turn-off pop by muting	
C4	100nF	Supply Voltage Bypass		Danger of oscillations	
C5	1000μF	Supply Voltage Bypass			
C6 and C7	47μF	Feedback input DC decoupling	Increase of the Switch-on time	Danger of Switch-on time	
C8 and C9	0.1µF	Frequency stability		Danger of oscillations	
C10 and C11	1000μF	Output DC decoupling		Higher low-frequency cut-off	

(*) Closed loop gain must be higher than 26dB

5 BUILT-IN PROTECTION SYSTEMS

5.1 Thermal Shut-down

The presence of a thermal limiting circuit offers the following advantages:

- 1 an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
- 2 the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature; if for any reason the junction temperature increases up to 145°C. the thermal shutdown simply reduces the output power and therefore the power dissipation.

The maximum allowable power dissipation depends upon the thermal resistance junction-ambient. Figure 15 shows the dissipable power as a function of ambient temperature for different heatsink thermal resistance.

5.2 Short Circuit (AC Conditions)

The TDA7263L can withstand accidental short circuits across the speaker made by a wrong connection during normal play operation.

<u>ل</u>جک

6 HEAT SINK DIMENSIONING:

In order to avoid the thermal protection intervention, that is placed approximatively at $T_j = 150^{\circ}$ C, it is important the dimensioning of the Heat Sinker R_{Th} (°C/W).

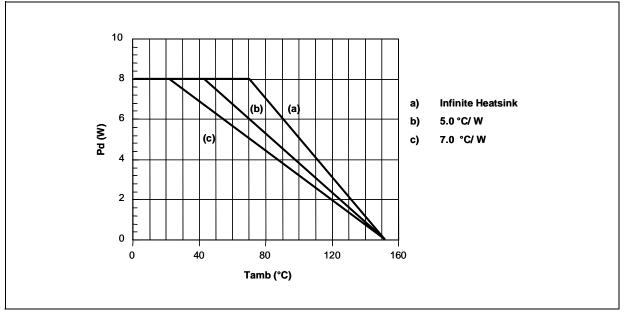
The parameters that influence the dimensioning are:

- Maximum dissipated power for the device (Pdmax)
- Max thermal resistance Junction to case (R_{Th j-c})
- Max. ambient temperature Tamb max
- Quiescent current Iq (mA)

6.1 Example:

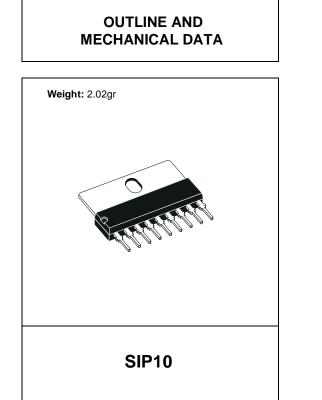
<u>ل</u>رکا

 $V_{CC} = 20V$, $R_{load} = 80hm$, $R_{Th j-c} = 9 \text{ °C/W}$, $T_{amb max} = 50 \text{ °C}$


 $\mathsf{P}_{dmax} = (\mathsf{N}^{\circ} \text{ channels}) \cdot \frac{2\mathsf{V}_{cc}^{2}}{\Pi^{2} \cdot \mathsf{R}_{\mathsf{load}}} + \mathsf{I}_{\mathsf{q}} \cdot \mathsf{V}_{cc}$

 $P_{dmax} = 2 \cdot (2.5) + 0.5 = 5.5W$

(Heat Sinker) $R_{Th c-a} = \frac{150 - T_{amb max}}{P_{d max}} - R_{Th j-c} = \frac{150 - 50}{5.5} - 9 = 9.0^{\circ}C/W$


In figure 11 is shown the Power derating curve for the device.

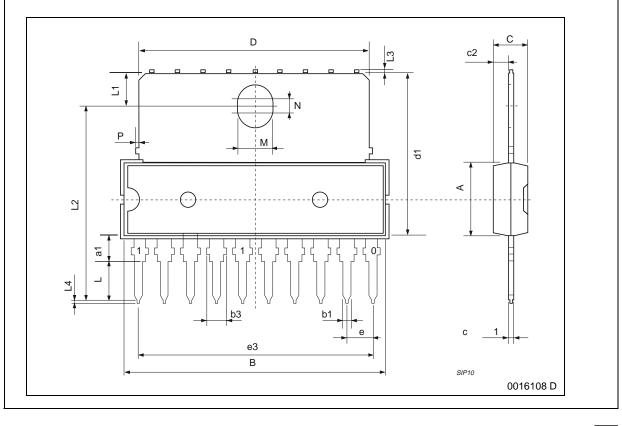

Figure 15. Power Derating Curve

Figure 16. SIP10 Mechanical Data & Package Dimensions

DIM.		mm			inch	
DINI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			7.1			0.280
a1	2.7		3	0.106		0.118
В			24.8			0.976
b1		0.5			0.020	
b3	0.85		1.6	0.033		0.063
С		3.3			0.130	
c1		0.43			0.017	
c2		1.32			0.052	
D			23.7			0.933
d1		14.5			0.571	
е		2.54			0.100	
e3		22.86			0.900	
L	3.1			0.122		
L1		3			0.118	
L2		17.6			0.693	
L3			0.25			0.010
L4			0.254			0.010
М		3.2			0.126	
Ν		1			0.039	
Р			0.15			0.006

Table 5. Revision History

Date	Revision	Description of Changes
June 2003	1	First Issue
September 2004	2	Changed Status and the graphic aspect in compliant to the new rules "Corporate Technical Pubblications Design Guide"

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

