25W MONO CLASS-D AMPLIFIER

- 25W OUTPUT POWER:
$R_{L}=8 \Omega / 4 \Omega$; THD $=10 \%$
- HIGH EFFICIENCY
- WIDE SUPPLY VOLTAGE RANGE (UP TO $\pm 25 \mathrm{~V}$)
- SPLIT SUPPLY
- OVERVOLTAGE PROTECTION
- ST-BY AND MUTE FEATURES
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

DESCRIPTION

Multiwatt15

ORDERING NUMBER: TDA7482
The TDA7482 is an audio class-D amplifier assembled in Multiwatt15 package specially designed for high efficiency applications mainly for TV and Home Stereo sets.

Figure 1: Test and Application circuit.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	± 28	V
$\mathrm{P}_{\text {tot }}$	Power Dissipation $\mathrm{T}_{\text {case }}=70^{\circ} \mathrm{C}$	35	W
$\mathrm{~T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {FREQ }}$	Maximum Voltage Across RF (pin6)	8	V
$\mathrm{~T}_{\text {op }}$	Operating Temperature Range	0 to 70	${ }^{\circ} \mathrm{C}$
ESD	Max ESD on Pins	± 1.2	KV

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Parameter	Typ.	Max.	Unit
$\mathrm{R}_{\mathrm{th} j \text {-case }}$	Thermal Resistance Junction-case	1.8	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PIN FUNCTIONS

\mathbf{N}.	Name		Function
1	OUT	PWM OUTPUT	
2	BOOTDIODE	BOOTSTRAP DIODE ANODE	
3	BOOT	BOOTSTRAP	
4	NC	NOT CONNECTED	
5	FEEDCAP	FEEDBACK INTEGRATING CAPACITOR	
6	FREQ	SETTING FREQUENCY RESISTOR	
7	SGN-GND	SIGNAL GROUND	
8	-VCC SIGN	SIGNAL NEGATIVE SUPPLY	
9	IN	INPUT	
10	ST-BY/MUTE	CONTROL STATE PIN	
11	+VCC SIGN	POSITIVE SIGNAL SUPPLY	
12	VREG	INTERNAL VOLTAGE REGULATOR	
13	+VCC POW	POSITIVE POWER SUPPLY	
14	-VCC POW	NEGATIVE POWER SUPPLY (to be connected to pin 13 via CS)	
15	-VCC POW	NEGATIVE POWER SUPPLY (to be connected to pin 13 via CS)	

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $\mathrm{V}_{\mathrm{CC}}= \pm 21 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{R}_{\mathrm{S}}=50 \Omega$;
$R_{F}=12 \mathrm{~K} \Omega$; Demod.. filter $\mathrm{L}=60 \mu \mathrm{H}, \mathrm{C}=470 \mathrm{nF} ; \mathrm{f}=1 \mathrm{KHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
V_{S}	Supply Range		± 10		± 25	V
$\mathrm{I}_{\text {a }}$	Total Quiescent Current	$\mathrm{R}_{\mathrm{L}}=\infty$, No LC Filter		40	60	mA
V_{OS}	Output Offset Voltage	Play Condition	-70	-30	10	mV
Po	Output Power	$\begin{aligned} & \hline \text { THD }=10 \% \\ & \text { THD }=1 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 18 \end{aligned}$		$\begin{aligned} & \hline W \\ & w \end{aligned}$
Po	Output Power	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{V}_{\mathrm{CC}}= \pm 16 \mathrm{~V} ; \\ & \mathrm{THD}=10 \% \\ & \mathrm{THD}=1 \%\left(^{*}\right) \\ & \hline \end{aligned}$		$\begin{array}{r} 25 \\ 18 \\ \hline \end{array}$		$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
P_{D}	Maximum Dissipated Power	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \pm 21 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \\ & \mathrm{P}_{\mathrm{O}}=25 \mathrm{~W} \text { THD } 10 \% \\ & \hline \end{aligned}$		3.8		W
η	$\text { Efficiency } \equiv \frac{\mathrm{P}_{\mathrm{O}}}{\mathrm{P}_{\mathrm{O}}+\mathrm{P}_{\mathrm{D}}} \equiv \frac{\mathrm{P}_{\mathrm{O}}}{\mathrm{P}_{\mathrm{I}}}\left({ }^{* \star)}\right.$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \pm 21 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \\ & \mathrm{P}_{\mathrm{O}}=18 \mathrm{~W} \text { THD } 10 \% \end{aligned}$		87		\%
$\eta_{\text {max }}$	Top Efficiency maximum	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \pm 25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \\ & \mathrm{P}_{\mathrm{O}}=43 \mathrm{~W} \text { THD } 20 \% \\ & \hline \end{aligned}$		88.5		\%
THD	Total Harmonic Distortion	$\mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$		0.1		\%
$I_{\text {max }}$	Overcurrent Protection Threshold	$\mathrm{R}_{\mathrm{L}}=0$	3.5	5		A
T_{j}	Thermal Shut-down Junction Temperature			150		${ }^{\circ} \mathrm{C}$
G_{V}	Closed Loop Gain		29	30	31	dB
e_{N}	Total Input Noise	A Curve $\mathrm{f}=20 \mathrm{~Hz} \text { to } 22 \mathrm{KHz}$		$\begin{gathered} \hline 7 \\ 12 \\ \hline \end{gathered}$		$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {CCtotmax }}$	Maximum Total V ${ }_{\text {cc }}$ Protection		50			V
R_{i}	Input Resistance		20	30		$\mathrm{k} \Omega$
SVR	Supply Voltage Rejection	$\mathrm{f}=100 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{r}}=0.5$	46	60		dB
$\mathrm{T}_{\mathrm{r}}, \mathrm{T}_{\mathrm{f}}$	Rising and Falling Time			50		ns
R DSSN	Power Transistor on Resistance			0.4		Ω
Fsw-op	Switching Frequency Operative Range		100		200	KHz
$\mathrm{F}_{\text {SW }}$	Switching Frequency		100	120	140	KHz
B_{F}	Zero Signal Frequency Constant (***)			1.4×10^{9}		$\mathrm{Hz} \Omega$
R_{F}	Frequency Controller Resistor Range (****)		7	12	14	K Ω
MUTE \& STAND-BY FUNCTIONS						
$\mathrm{V}_{\text {ST-BY }}$	Stand-by range				0.8	V
$\mathrm{V}_{\text {MUTE }}$	Mute Range		1.8		2.5	V
$\mathrm{V}_{\text {PLAY }}$	Play Range (1)		4			V
$\mathrm{A}_{\text {MUTE }}$	Mute Attenuation		60	80		dB
$\mathrm{I}_{\mathrm{qST} \text {-BY }}$	Quiescent Current @ Stand-by			3	5	mA

*: The output LC filter must be changed to: $\mathrm{L}=30 \mu \mathrm{H} ; \mathrm{C}=1 \mu \mathrm{~F}$
**: Po = measured across the load using the following inductor: COIL 58120 MPPA2 (magnetics) TURNS: $28 \varnothing 1 \mathrm{~mm}$
***: The zero-signal switching frequency can be obtained using the following expression: $\mathrm{Fssw}_{\mathrm{sw}}=\mathrm{B}_{\mathrm{F}} / \mathrm{R}_{\mathrm{F}}$
${ }^{* * * *}$: The maximum value of R_{F} is related to the maximum possible value for the voltage drop on R_{F} itself
(1) For $\mathrm{V} 10>5.2 \mathrm{~V}$, an input impedance of $10 \mathrm{~K} \Omega$ is to be considered

Figure 2: Recommended P.C. Board and Component Layout of the Circuit of Figure 1 (1.25:1 scale)

Note: Capacitor C5 must be as close as possible to device's pins 16 and 17

MULTIWATT15 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			5			0.197
B			2.65			0.104
C			1.6			0.063
D		1			0.039	
E	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.02	1.27	1.52	0.040	0.050	0.060
G1	17.53	17.78	18.03	0.690	0.700	0.710
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.870	0.886
L2	17.65		18.1	0.695		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
M	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.63	5.08	5.53	0.182	0.200	0.218
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

