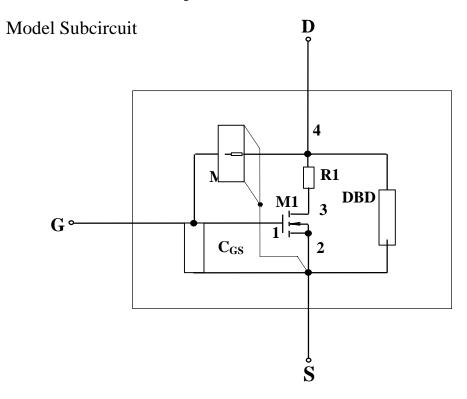


N-Channel Enhancement-Mode Transistors


Characteristics

- N-channel Vertical DMOS
- Macro-Model (Subcircuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to 10 volt gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain feedback

capacitance network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measured electrical data and are not intended as an exact physical description of a device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

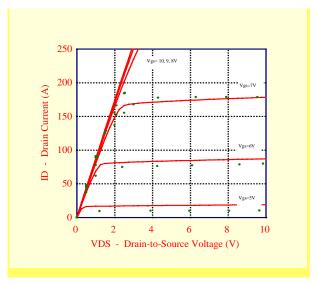
Siliconix 9/14/98

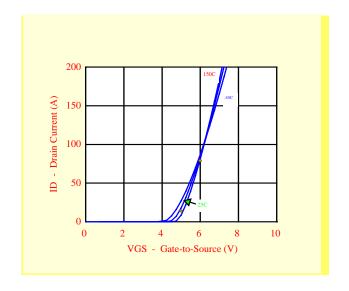
Document: 70936

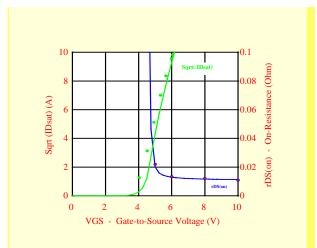
N-Channel Device (T_J=25°C Unless Otherwise Noted)

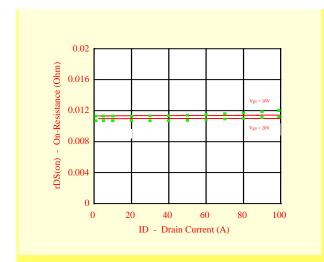
Parameter	Symbol	Test Conditions	Тур	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3.12	V
On-State Drain Current ^b	I _{D(on)}	$V_{DS} = 5V, V_{GS} = 10V$	416	A
Drain-Source On-State Resistance ^b	r _{DS(on)}	$V_{GS} = 10V, I_D = 30A$	0.011	
		$V_{GS} = 10V, I_D = 30A,$	0.018	Ω
		$T_J = 125^{\circ}C$		
		$V_{GS} = 10V, I_{D} = 30A,$	0.022	
		$T_J = 175^{\circ}C$		
Forward Transconductance ^b	\mathbf{g}_{fs}	$V_{DS} = 15V, I_D = 30A$	60	S
Forward Voltage ^b	V_{SD}	$I_F = 75A, V_{GS} = 0V$	0.92	V
Dynamic ^a				
Input Capacitance	C_{iss}		4890	
Output Capacitance	C_{oss}	$V_{GS} = 0V, V_{DS} = 25V,$ f = 1MHz	963	pF
Reverse Transfer Capacitance	C_{rss}		221	
Total Gate Charge ^c	$Q_{\rm g}$		83	
Gate-Source Charge ^c	Q_{gs}	$V_{DS} = 30V, V_{GS} = 10V,$ $I_{D} = 75A$	31	nC
Gate-Drain Charge ^c	Q_{gd}		24	
Turn-On Delay Time ^c	t _{d(on)}		57	
Rise Time ^c	t _r	$V_{DD} = 30 \text{V}, R_L = 0.47 \Omega$	31	
Turn-Off Delay Time ^c	t _{d(off)}	$I_D \cong 75A, V_{GEN} = 10V,$	62	ns
	4(011)	$R_G = 2.5\Omega$		
Fall Time ^c	t_{f}		20	
Reverse Recovery Time	t _{rr}	$I_F = 75A$, di/dt = 100A/ μ s	100	ns

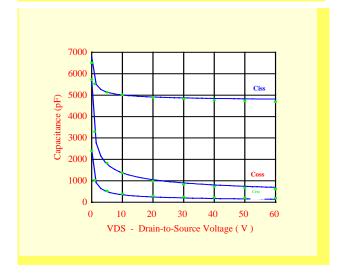
Notes:

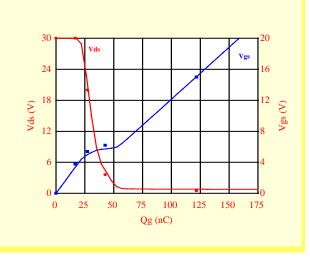

- a) Guaranteed by design, not subject to production testing
- b) Pulse test: pulse width $\leq 300 \,\mu\text{sec}$, duty cycle $\leq 2\%$
- c) Independent of operating temperature


9/14/98 Document: 70936






$\label{eq:comparison} Comparison of Model with Measured Data $$(T_J=25^{\circ}C$ Unless Otherwise Noted)$$



Siliconix 9/14/98 Document: 70936