MMBZ15VDL, MMBZ27VCL

40W PEAK POWER DUAL SURFACE MOUNT TVS

Features

- Dual TVS in Common Cathode Configuration for ESD Protection
- 40 Watt Peak Power Dissipation @1.0ms (Unidirectional)
- 225 mW Power Dissipation
- Ideally Suited for Automatic Insertion
- Low Leakage

Mechanical Data

- Case: SOT-23, Molded Plastic
- Case Material - UL Flammability Rating Classification 94V-0
- Moisture sensitivity: Level 1 per J-STD-020A
- Terminals: Solderable per MIL-STD-202, Method 208
- Polarity: See Diagram
- Marking: Marking Code \& Date Code, See Page 2
- Marking Code: See Table Below

- Weight: 0.008 grams (Approx.)
- Ordering Information: See Page 2

Maximum Ratings ${ }^{@} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 1)	P_{d}	225	mW
Peak Power Dissipation (Note 2)	P_{PK}	40	W
Thermal Resistance, Junction to Ambient Air (Note 1)	$\mathrm{R}_{\text {өJA }}$	420	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ${ }^{@ T_{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V}$ max @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Note 3)

Type Number	Marking Code	$V_{\text {Rwm }}$ Volts	$\begin{gathered} \substack{\mathrm{I}_{\mathrm{R}} @ \\ \mathrm{~V}_{\mathrm{RWM}}} \\ \hline \mathrm{nA} \end{gathered}$	Breakdown Voltage				Vc @ IPp (Note 2)		Typical Temperature Coefficient $\mathrm{T}_{\mathrm{C}}\left(\% /^{\circ} \mathrm{C}\right)$
				$\mathrm{V}_{\text {BR }}$ (Note 3) (V)			@ IT	Vc	Ipp	
				Min	Nom	Max	mA	v	A	
MMBZ15VDL	KVJ	12.8	100	14.3	15	15.8	1.0	21.2	1.9	+0.080

$\mathrm{V}_{\mathrm{F}}=1.1 \mathrm{~V}$ max @ $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$ (Note 3)

Type Number	Marking code	VRWm	$\mathrm{I}_{\mathrm{R}} @$$V_{\text {RWM }}$	Breakdown Voltage				VC @ IPP (Note 2)		Typical Temperature Coefficient
				$\mathrm{V}_{\text {BR }}$ (Note 3) (V)			@ $\mathbf{I T}^{\text {I }}$	V_{c}	Ipp	
		Volts	nA	Min	Nom	Max	mA	V	A	TC (\%/ ${ }^{\circ} \mathrm{C}$)
MMBZ27VCL	KVP	22	50	25.65	27	28.35	1.0	38	1.0	+0.090

Note: 1. Device mounted on FR-5 PCB $1.0 \times 0.75 \times 0.062$ inch pad layout as shown on Diodes Inc. suggested pad layout AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf. 200mW per element must not be exceeded.
2. Non-repetitive current pulse per Figure 2 and derate above $T_{A}=25^{\circ} \mathrm{C}$ per Figure 1.
3. Short duration test pulse used to minimize self-heating effect.

Ordering Information (Note 4)

Device	Packaging	Shipping
MMBZ15VDL-7 MMBZ27VCL-7	SOT-23	$3000 /$ Tape \& Reel

Notes: 4. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

Year	2001	2002	2003	2004	2005	2006	2007	2008
Code	M	N	P	R	S	T	U	V

Month	Jan	Feb	March	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	O	N	D

Fig. 1 Pulse Derating Curve

Fig. 3 Steady State Power Derating Curve

Fig. 2 Pulse Waveform

BIAS (V)
Fig. 4 Typical Capacitance vs. Bias Voltage (Lower curve is Bidirectional mode, Upper curve is Unidirectional mode)

Power is defined as $P_{p k}=V_{c} \times I_{p p}$

Power is defined as $P_{\mathrm{pk}(\mathrm{NOM})}=\mathrm{V}_{\mathrm{BR}(\mathrm{NOM})} \times \mathrm{I}_{\mathrm{pp}}$ where $\mathrm{V}_{\mathrm{BR}(\mathrm{NOM})}$ is the nominal breakdown voltage

