N-CHANNEL 500V - 0.10 2 -26A TO-247 Zener-Protected MDmesh ${ }^{\text {TM }}$ Power MOSFET

TYPE	V $_{\text {DSS }}$	$\mathbf{R}_{\text {DS(on) }}$	$\mathbf{I}_{\mathbf{D}}$
STW26NM50	500 V	$<0.120 \Omega$	30 A

- TYPICAL R ${ }_{\text {DS }}(\mathrm{on})=0.10 \Omega$
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- IMPROVED ESD CAPABILITY
- LOW INPUT CAPACITANCE AND GATE CHARGE
- LOW GATE INPUT RESISTANCE

DESCRIPTION

The MDmesh ${ }^{\text {TM }}$ is a new revolutionary MOSFET technology that associates the Multiple Drain process with the Company's PowerMESH ${ }^{\text {TM }}$ horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the Company's proprietary strip technique yields overall dynamic performance that is significantly better than that of similar competition's products.

APPLICATIONS

The MDmesh ${ }^{\text {TM }}$ family is very suitable for increasing power density of high voltage converters allowing system miniaturization and higher efficiencies.

INTERNAL SCHEMATIC DIAGRAM

ORDERING INFORMATION

SALES TYPE	MARKING	PACKAGE	PACKAGING
STW26NM50	W26NM50	TO-247	TUBE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	500	V
$\mathrm{~V}_{\mathrm{DGR}}$	Drain-gate Voltage $\left(\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega\right)$	500	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate- source Voltage	± 30	V
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	30	A
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	18.9	A
$\mathrm{I}_{\mathrm{DM}}(\cdot)$	Drain Current (pulsed)	120	A
$\mathrm{P}_{\text {TOT }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	313	W
	Derating Factor	2.5	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{ESD}(\mathrm{G}-\mathrm{S})}$	Gate source ESD(HBM-C=100pF, $\mathrm{R}=1.5 \mathrm{~K} \Omega)$	6000	V
$\mathrm{dv} / \mathrm{dt}(1)$	Peak Diode Recovery voltage slope	15	$\mathrm{~V} / \mathrm{ns}$
T_{j}	Operating Junction Temperature Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$			

(•) Pulse width limited by safe operating area
(1) $\mathrm{I}_{\mathrm{SD}} \leq 26 \mathrm{~A}$, di/dt $\leq 200 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{(B R) D S S}, \mathrm{~T}_{\mathrm{j}} \leq \mathrm{T}_{\mathrm{JMAX}}$.

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	0.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{I}	Maximum Lead Temperature For Soldering Purpose	300	${ }^{\circ} \mathrm{C}$

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
$\mathrm{I}_{\text {AR }}$	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_{j} max)	13	A
E_{AS}	Single Pulse Avalanche Energy (starting $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{AR}}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$)	740	mJ

GATE-SOURCE ZENER DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
BVGSO	Gate-Source Breakdown Voltage	Igss $= \pm 1 \mathrm{~mA}$ (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

ELECTRICAL CHARACTERISTICS (TCASE $=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE SPECIFIED)
ON/OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {(BR) } \mathrm{DSS}}$	Drain-source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	500			V
IdSs	Zero Gate Voltage Drain Current (VGS $=0$)	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{DS}}=\text { Max Rating } \\ \mathrm{V}_{\mathrm{DS}}=\text { Max Rating, }, \mathrm{T}=125^{\circ} \mathrm{C} \end{array}$			$\begin{gathered} \hline 10 \\ 100 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IGss	Gate-body Leakage Current (VDS $=0$)	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	3	4	5	V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain-source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13 \mathrm{~A}$		0.1	0.12	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
gfs (1)	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ID}=13 \mathrm{~A}$		20		S
$\begin{aligned} & \hline \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\mathrm{rss}} \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0$		$\begin{gathered} 3000 \\ 700 \\ 50 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Coss eq. (3)	Equivalent Output Capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ to 400 V		300		pF

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_{d}(o n)$ t_{r}	Turn-on Delay Time Rise Time	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{DD}}=250 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13 \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V} \mathrm{GS}=10 \mathrm{~V} \\ \text { (Resistive Load see, Figure 3) } \end{array}$		$\begin{aligned} & 28 \\ & 25 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \mathrm{ns} \end{aligned}$
$\begin{aligned} & \hline \mathrm{Q}_{\mathrm{g}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=26 \mathrm{~A}, \\ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{array} \end{aligned}$		76 20 36	106	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{r}}\left(\right.$ Voff) $^{\text {(}}$	Off-voltage Rise Time	$\mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=26 \mathrm{~A}$,		13		ns
t_{f}	Fall Time	$\mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		19		ns
t_{c}	Cross-over Time	(Inductive Load see, Figure 5)		36		ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\begin{gathered} \text { ISD } \\ \text { ISDM (2) } \end{gathered}$	Source-drain Current Source-drain Current (pulsed)				$\begin{gathered} \hline 26 \\ 104 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
$\mathrm{V}_{\text {SD }}$ (1)	Forward On Voltage	$\mathrm{ISD}=26 \mathrm{~A}, \mathrm{~V}$ GS $=0$			1.5	V
$\begin{gathered} \mathrm{t}_{\mathrm{rrr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{aligned} & \hline \mathrm{ISD}=26 \mathrm{~A}, \text { di/dt }=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \text { (see test circuit, Figure 5) } \end{aligned}$		$\begin{gathered} \hline 400 \\ 5.5 \\ 27.8 \end{gathered}$		$\begin{gathered} \hline \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$
$\begin{gathered} \mathrm{t}_{\mathrm{tr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{aligned} & \hline \mathrm{ISD}=26 \mathrm{~A}, \text { di/dt }=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \text { (see test circuit, Figure 5) } \end{aligned}$		$\begin{gathered} \hline 492 \\ 7 \\ 28.8 \end{gathered}$		$\begin{aligned} & \mathrm{ns} \\ & \mu \mathrm{C} \end{aligned}$

Note: 1. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.
2. Pulse width limited by safe operating area.
3. $\mathrm{C}_{\text {oss eq }}$. is defined as a constant equivalent capacitance giving the same charging time as $\mathrm{C}_{\text {oss }}$ when V_{DS} increases from 0 to 80% VDSS.

Safe Operating Area For TO-247

Output Characteristics

Transconductance

Thermal Impedance For TO-247

Transfer Characteristics

Gate Charge vs Gate-source Voltage

Normalized Gate Threshold Voltage vs Temp.

Source-drain Diode Forward Characteristics

Capacitance Variations

Normalized On Resistance vs Temperature

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

TO-247 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.85		5.15	0.19		0.20
D	2.20		2.60	0.08		0.10
E	0.40		0.80	0.015		0.03
F	1		1.40	0.04		0.05
F1		3			0.11	
F2		2			0.07	
F3	2		2.40	0.07		0.09
F4	3		3.40	0.11		0.13
G		10.90			0.43	
H	15.45		15.75	0.60		0.62
L	19.85		20.15	0.78		0.79
L1	3.70		4.30	0.14		0.17
L2		18.50			0.72	
L3	14.20		14.80	0.56		0.58
L4		34.60			1.36	
L5		5.50			0.21	
M	2		3	0.07		0.11
V		50			50	
V2		600	0.14		0.143	
Dia	3.55					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

