SLLS540B - JULY 2002 - REVISED NOVEMBER 2004

- Operate With 3-V to 5.5-V V_{CC} Supply
- Operate Up To 1 Mbit/s
- Low Supply Current . . . 300 μA Typ
- External Capacitors . . . 4 \times 0.1 μ F
- Accept 5-V Logic Input With 3.3-V Supply
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Applications
 - Battery-Powered Systems, PDAs, Notebooks, Laptops, Palmtop PCs, and Hand-Held Equipment

D, DB, DW, OR PW PACKAGE (TOP VIEW)							
C1+ [1	Ο	16	V _{CC}			
V+ [2		15	GND			
C1- [3		14	DOUT1			
C2+ [4		13	RIN1			
C2- [5		12	ROUT1			
V- [6		11	DIN1			
DOUT2 [7		10	DIN2			
RIN2]	8		9	ROUT2			

description/ordering information

The SN65C3232 and SN75C3232 consist of two line drivers, two line receivers, and a dual charge-pump circuit with \pm 15-kV ESD protection pin to pin (serial-port connection pins, including GND). These devices provide the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The devices operate at data signaling rates up to 1 Mbit/s and a driver output slew rate of 24 V/µs to 150 V/µs.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	0010 D	Tube of 40	SN65C3232D	0500000
	SOIC – D	Reel of 2500	SN65C3232DR	65C3232
		Tube of 40	SN65C3232DW	0500000
–40°C to 85°C	SOIC – DW	Reel of 2000	SN65C3232DWR	65C3232
	SSOP – DB	Reel of 2000	SN65C3232DBR	65C3232
	TSSOP – PW	Tube of 90	SN65C3232PW	000000
		Reel of 2000	SN65C3232PWR	CB3232
		Tube of 40	SN75C3232D	7500000
	SOIC – D	Reel of 2500	SN75C3232DR	75C3232
		Tube of 40	SN75C3232DW	7500000
0°C to 70°C	SOIC – DW	Reel of 2000	SN75C3232DWR	75C3232
	SSOP – DB	Reel of 2000	SN75C3232DBR	75C3232
	TSSOP – PW	Tube of 90	SN75C3232PW	040000
	13309 - 900	Reel of 2000	SN75C3232PWR	CA3232

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

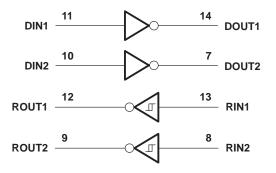
Copyright © 2004, Texas Instruments Incorporated

SLLS540B - JULY 2002 - REVISED NOVEMBER 2004

Function Tables

EACH DRIVER

INPUT DIN	OUTPUT DOUT			
L	Н			
н	L			
H = high level, L = low				


level

EACH RECEIVER

INPUT RIN	OUTPUT ROUT
L	Н
н	L
Open	Н

H = high level, L = low level, Open = input disconnected or connected driver off

logic diagram (positive logic)

SLLS540B – JULY 2002 – REVISED NOVEMBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range $M_{\rm eff}$ (eee Note 1)	
	-0.3 V to 6 V
Positive output supply voltage range, V+ (see Note 1)	-0.3 V to 7 V
Negative output supply voltage range, V- (see Note 1) 0.3 V to –7 V
	΄ 13 V
Input voltage range, V _I : Drivers	
Output voltage range, V _O : Drivers	–13.2 V to 13.2 V
Receivers	–0.3 V to V _{CC} + 0.3 V
Package thermal impedance, θ_{JA} (see Notes 2 and 3)): D package
	DB package 46°C/W
	DW package 57°C/W
	PW package 108°C/W
Operating virtual junction temperature, T ₁	150°C
	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to network GND.

2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4 and Figure 4)

				MIN	NOM	MAX	UNIT
	Supply voltage		V _{CC} = 3.3 V	3	3.3	3.6	
			$V_{CC} = 5 V$	4.5	5	5.5	V
	Deitsen high Jassel immed soldene	V(2			V
VIH	Driver high-level input voltage	DIN	$V_{CC} = 5 V$	2.4			V
VIL	Driver low-level input voltage		DIN			0.8	V
N.	Driver input voltage		DIN	0		5.5	V
٧I	VI Receiver input voltage			-25		25	V
т.			SN65C3232	-40		85	°C
Τ _Α	Operating free-air temperature		SN75C3232	0		70	-0

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

PARAMETER TEST CONDITIONS		CONDITIONS	MIN	TYP‡	MAX	UNIT	
ICC	Supply current	No load,	V_{CC} = 3.3 V or 5 V		0.3	1	mA

[‡] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

SLLS540B - JULY 2002 - REVISED NOVEMBER 2004

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

PARAMETER		TEST CONDITIONS			түр†	MAX	UNIT
VOH	High-level output voltage	DOUT at $R_L = 3 k\Omega$ to GND,	DIN = GND	5	5.4		V
VOL	Low-level output voltage	DOUT at $R_L = 3 k\Omega$ to GND, DIN = V _{CC}		-5	-5.4		V
Iн	High-level input current	$V_{I} = V_{CC}$			±0.01	±1	μA
١ _{IL}	Low-level input current	V _I at GND			±0.01	±1	μA
L t		V _{CC} = 3.6 V,	$V_{O} = 0 V$		±35	±60	
los‡	Short-circuit output current	V _{CC} = 5.5 V,	$V_{O} = 0 V$		±35	±90	mA
r _O	Output resistance	V_{CC} , V+, and V– = 0 V,	$V_{O} = \pm 2 V$	300	10M		Ω

[†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

* Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

I	PARAMETER	1	TEST CONDITIONS		MIN	TYP†	MAX	UNIT
			C _L = 1000 pF		250			
	Maximum data rate (see Figure 1)	$R_L = 3 k\Omega$, One DOUT switching	C _L = 250 pF,	V_{CC} = 3 V to 4.5 V	1000			kbit/s
		one beer switching	C _L = 1000 pF,	V_{CC} = 4.5 V to 5.5 V	1000			
^t sk(p)	Pulse skew§	C _L = 150 pF to 2500 pF	$R_L = 3 k\Omega$ to 7 kΩ, See Figure 2			300		ns
SR(tr)	Slew rate, transition region (see Figure 1)	R _L = 3 kΩ to 7 kΩ, V _{CC} = 3.3 V	C _L = 150 pF to 1000	pF	18		150	V/µs

[†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

 $Pulse skew is defined as <math display="inline">|t_{PLH} - t_{PHL}|$ of each channel of the same device.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

SLLS540B – JULY 2002 – REVISED NOVEMBER 2004

RECEIVER SECTION

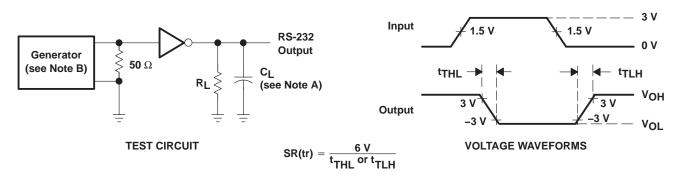
electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
Vон	High-level output voltage	I _{OH} = -1 mA	V _{CC} – 0.6 V	V _{CC} – 0.1 V		V
VOL	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
		V _{CC} = 3.3 V		1.5	2.4	V
VIT+	Positive-going input threshold voltage	$V_{CC} = 5 V$		1.8	2.4	V
	No wether proton from the set of solid code and	V _{CC} = 3.3 V	0.6	1.2		
VIT-	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.5		V
V _{hys}	Input hysteresis (V _{IT+} – V _{IT–})			0.3		V
r _i	Input resistance	$V_{I} = \pm 3 V \text{ to } \pm 25 V$	3	5	7	kΩ

[†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 3)


PARAMETER		TEST CONDITIONS	ΜΙΝ ΤΥΡ [†] ΜΑΧ	UNIT
^t PLH	Propagation delay time, low- to high-level output	0. 450 - 5	300	ns
^t PHL	Propagation delay time, high- to low-level output	C _L = 150 pF	300	ns
t _{sk(p)}	Pulse skew [‡]		300	ns

[†] All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

[‡]Pulse skew is defined as |tpLH - tpHL| of each channel of the same device.

NOTE 4: Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

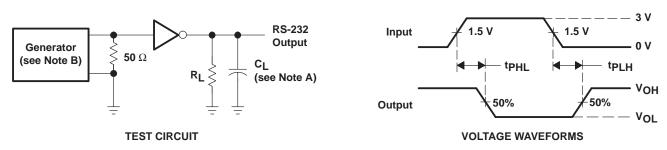
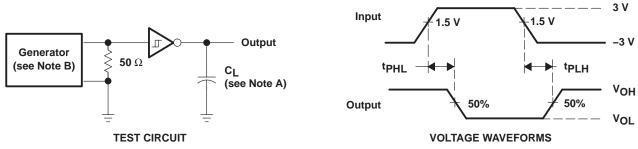

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

Figure 1. Driver Slew Rate

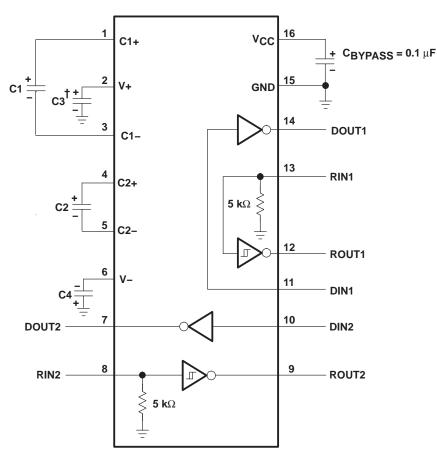
SLLS540B – JULY 2002 – REVISED NOVEMBER 2004



NOTES: A. C₁ includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew


NOTES: A. CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 3. Receiver Propagation Delay Times

SLLS540B - JULY 2002 - REVISED NOVEMBER 2004

APPLICATION INFORMATION

 $^{\dagger}\,\text{C3}$ can be connected to V_CC or GND.

	V _{CC} vs CAPACITOR VALUES						
Vo	V _{CC} C1 C2, C3,						
	± 0.3 V 0.5 V 5.5 V	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF				

Figure 4. Typical Operating Circuit and Capacitor Values

4-Mar-2005

PACKAGING INFORMATION

www ti com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65C3232D	ACTIVE	SOIC	D	16	40	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN65C3232DBR	ACTIVE	SSOP	DB	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN65C3232DR	ACTIVE	SOIC	D	16	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN65C3232DW	ACTIVE	SOIC	DW	16	40	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SN65C3232DWR	ACTIVE	SOIC	DW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SN65C3232PW	ACTIVE	TSSOP	PW	16	90	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN65C3232PWR	ACTIVE	TSSOP	PW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN75C3232D	ACTIVE	SOIC	D	16	40	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75C3232DBR	ACTIVE	SSOP	DB	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75C3232DR	ACTIVE	SOIC	D	16	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
SN75C3232DW	ACTIVE	SOIC	DW	16	40	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SN75C3232DWR	ACTIVE	SOIC	DW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
SN75C3232PW	ACTIVE	TSSOP	PW	16	90	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
SN75C3232PWR	ACTIVE	TSSOP	PW	16	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

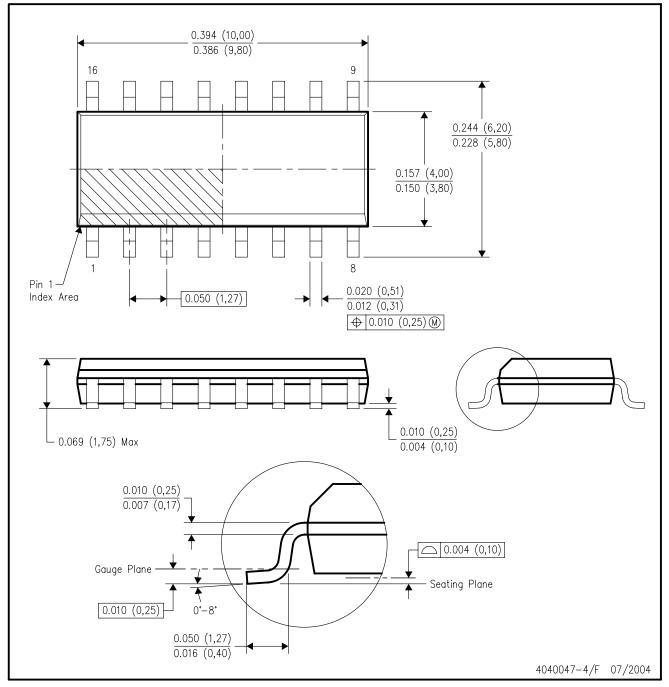
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on

PACKAGE OPTION ADDENDUM



incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

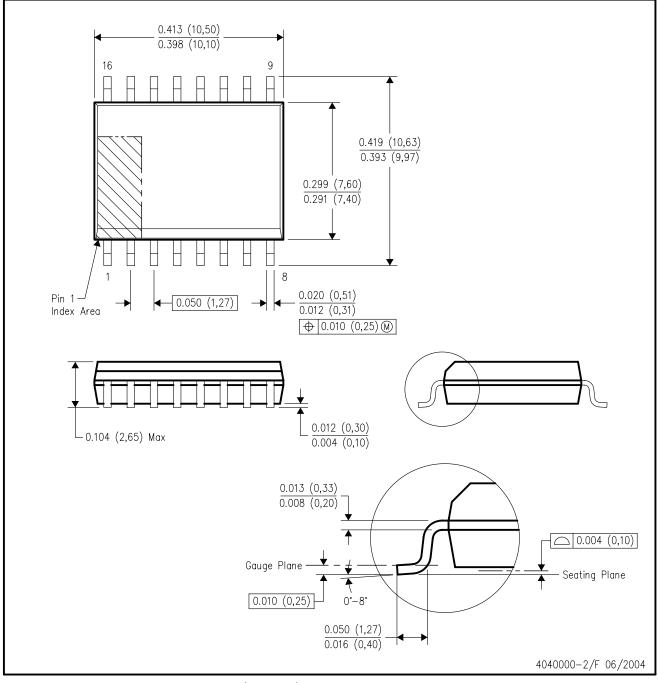
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AC.

DW (R-PDSO-G16)

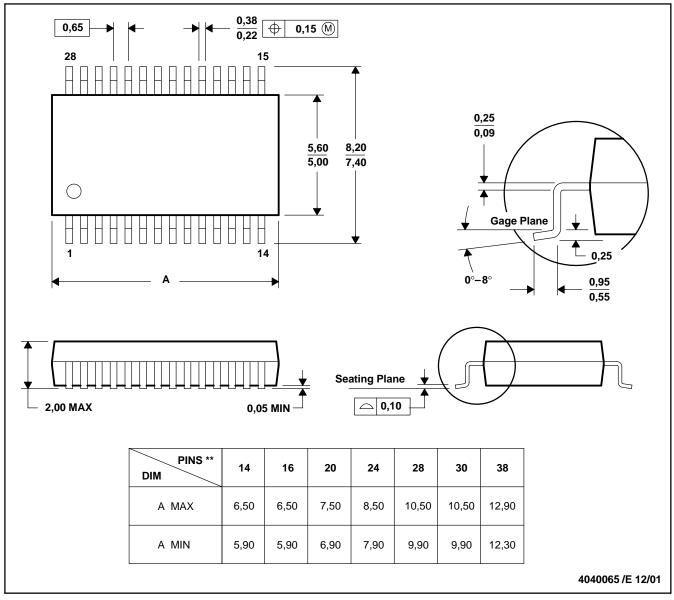
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AA.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

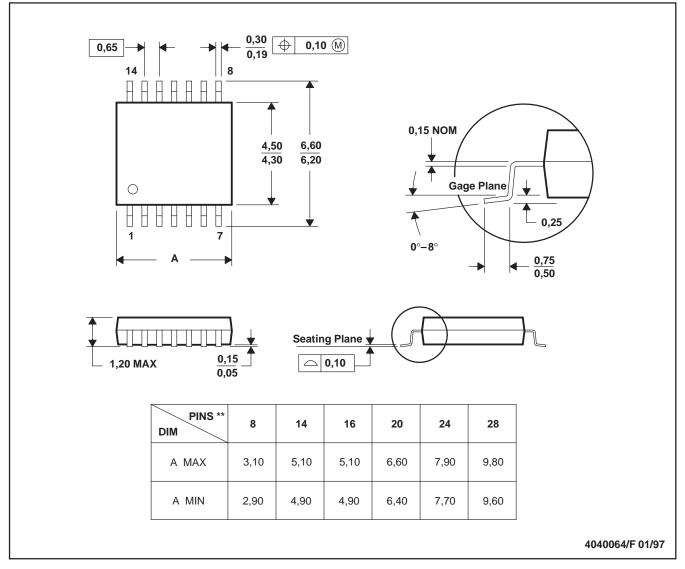
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated