PROJECT: Digital Dip Meter Q&A: EE Designh & Research DESIGN TIPS: Fault-Tree Analysis INSIGHT: Working with Arduino
LOCATION: United States LOCATION: Canada LOCATION: Canada LOCATION: United States
PAGE: 20 PAGE: 41 PAGE: 46 PAGE: 49

GIRGUIT GEI.U\R

FEBRUARY 2013
ISSUE 271

QR Coding Explaindo
Standing Waves 1(1

MCU-Based 3- D Pa|
Program a1

Camera Control g "/
Front-Panel Boarc

Robust Design W
Linux Sv?

The OSH Revolution

// A Model for the Future
// Why Open Source = Efficiency

// Design Collaboration
// And More

\ B

- : : e b

-

h

l

|

! "rﬂ‘gﬂ"ﬁﬂfﬂﬂﬂf /

I 4

B

: - - '_.1_..—

- -2 .

g

_ﬁ“f

0Qus $10.

‘ ‘ ‘ H |
74470"75349 J

> SBL2e 100

2-Port 3.3V TTL serial device support

with analog to digital converters & digital 1/0
Part No. SBL2E-100IR: $21.95 Qty. 1K

For as low as

> SBL2e X
1-Port RS5-232 serial device support
Part No. SBL2EX-100IR: $79.00 Qty. 1K

» SBL2e CHIP (80-pin LQFP)

2-Port 3.3V TTL serial device support o=
with analog to digital converters & digital I/O

Part No. SBL2ECHIP-236IR: $12.50 Qty. 1K

> SBL2e XA

1-Port RS-232 and 3.3V TTL serial device support
with analog to digital converters & digital 1/0
Part No. SBL2EXA-100IR: $79.00 Qty. 1K

Access serial, analog, or digital |/O data over Ethernet!

The goal:
Control, configure, or monitor
digital I/0, analog inputs, or a
serial device using Ethernet

The method:

NetBurner SBL2e Devices network-enable serial, analog, or
digital 1/O devices out of the box - no programming or
development is required. The included virtual COM port
Windows utility enables you to easily access serial devices
located on a remote NetBurner device as if they were plugged
into your own computer, The hardware is pre-programmed to
convert your serial data to Ethernet, enabling communication
with the serial device over a network or the Internet.

Connect serial port, digital I/O,
or analog input to
a SBL2e device

The result:
Access device from the
Internet or a local
area network (LAN)

| Need a custom solution?

NetBurner Development Kits are available
to customize any aspect of operation
including web pages, data filtering, or
custom network applications.

» Development Kit for SBL2e
Part No. NNDK-SBL2E-KIT: $299.00

Information and Sales | sales@netburner.com
Web | www.netburner.com
Telephone | 1-800-695-6828

mouser com

The widest selection
of the newest products.

MOUSER

ELECTRONICS.

W Authorized distributor of semiconductors
and electronic components for design engineers.

February 2013 - Issue 271

Got Range?

As with wireless connectivity, when it comes to your engi-
neering skills, range matters. The more you know about a variety
of applicable topics, the more you'll profit in your professional
and personal engineering-related endeavors. Thus, it makes
sense to educate yourself on a continual basis on the widest
range of topics you can. It can be a daunting task. But no wor-
ries. We're here to help. In this issue, we feature articles on
topics as seemingly diverse as wireless technology to embedded
programming to open-source development. Let's take a closer
look.

Consider starting with Catarina Mota and Marcin Jakubowski's
Tech the Future essay, “Open-Source Hardware for the Efficient
Economy” (p. 80). They are thoughtful visionaries at the fore-
front of a global open-source hardware project. You'll find their
work exciting and inspirational.

On page 20, Stuart Ball describes the process of designing a
digital dip meter. It's a go-to tool for checking a device’s resonant
frequency, or you can use it as a signal source to tune receivers.
Ball used a microcontroller to digitize the dip meter’s display.

Interested in 3-D technology? William Meyers and Guo Jie
Chin's 3-D Paint project (p. 26) is a complete hardware and
software package that uses free space as a canvas and enables
you to draw in 3-D by measuring ultrasonic delays. They used
a PC and MATLAB to capture movements and return them in
real time.

This month we're running the third article in Richard Lord's
series, “Digital Camera Controller” (p. 32). He covers the process
of building a generic front-panel controller for the Photo-Pal
flash-trigger camera controller project.

Turn to page 37 for the fifth article in Bob Japenga’s series on
concurrency in embedded systems. He covers the portable oper-
ating system interface (POSIX), mutex, semaphores, and more.

Check out the interview on page 41 for insight into the inter-
ests and work of electrical engineer and graduate student Colin
O'Flynn. He describes some of his previous work, as well as his
Binary Explorer Board, which he designed in 2012,

In Circuit Cellar 270, George Novacek tackled the topic of fail-
ure mode and criticality analysis (FMECA). This month he focuses
on fault-tree analysis (p. 46).

Arduino is clearly one of the hottest design platforms around.
But how can you use it in a professional-level design? Check out
Ed Nisley’s “Arduino Survival Guide” (p. 49).

Standing waves are notoriously difficult to understand.
Fortunately, Robert Lacoste prepared an article on the topic that
covers an experimental platform and measurements (p. 54).

This month’s article from the archives relates directly to the
issue’s wireless technology theme. On page 60 is Roy Franz's
2003 article about his WiFi SniFi design, which can locate wire-
less networks and then display “captured” packet information.

If you like this issue’s cover, you'll have to check out Jeff
Bachiochi’s article on QR coding (p. 68). He provides an excellent
analysis of the technology from a pro engineer’s point of view.

Ot

cj@circuitcellar.com

GIRGUIT GELLAR

THE WORLD’S SOURCE FOR EMBEDDED ELECTRONICS ENGINEERING INFORMATION

EDITORIAL CALENDAR
THEME
Embedded Applications
Wireless Communications

ISSUE
270 January
271 February

272 March Raobotics

273 April Embedded Programming
274 May Measurement & Sensors
275 June Communications

276 July Internet & Connectivity

277 August Embedded Development

278 September
279 October

Data Acquisition
Signal Processing
280 November Analog Techniques
281 December Programmable Logic

Analog Techniques: Projects and components dealing with analog signal
acquisition and generation (e.g., EMI/RF reduction, high-speed signal integrity,
signal conditioning, A/D and D/A converters, and analog programmable logic)

Communications: Projects that deal with computer networking, human-to-
human interaction, human-to-computer interaction, and electronic information
sharing (e.g., speech recognition, data transmission, Ethernet, USB, I2C, and SPI)

Data Acquisition: Projects, technologies, and algorithms for real-world data
gathering and monitoring (e.g., peripheral interfaces, sensors, sensor net-
works, signal conditioning, ADCs/DACs, data analysis, and post-processing)

Embedded Applications: Projects that feature embedded controllers and
MCU-based system design (e.g., automotive applications, test equipment,
simulators, consumer electronics, real-time control, and low-power techniques)

Embedded Development: Tools and techniques used to develop new hard-
ware or software (e.g., prototyping and simulation, emulators, development
tools, programming languages, HDL, RTOSes, debugging tools, and useful tips)

Embedded Programming: The software used in embedded applications
(e.g., programming languages, RTOSes, file systems, protocols, embedded
Linux, and algorithms)

Internet & Connectivity: Applications that deal with connectivity and
Internet-enabled systems (e.g., networking chips, protocol stacks, device
servers, and physical layer interfaces)

Measurement & Sensors: Projects and technologies that deal with sensors,
interfaces, and actuators (e.g., one-wire sensors, MEMS sensors, and sensor
interface techniques)

Programmable Logic: Projects that utilize FPGAs, PLDs, and other program-
mable logic chips (e.g., dynamic reconfiguration, memory, and HDLs)

Robotics: Projects about robot systems, devices capable of repeating motion
sequences, and MCU-based motor control designs (e.g., mobile robots, motor
drives, proximity sensing, power control, navigation, and accelerometers)

Signal Processing: Projects and technology related to the real-time processing
of signals (e.g., DSP chips, signal conditioning, ADCs/DACs, filters, and compar-
isons of RISC, DSP, VLIW, etc.)

Wireless Communications: Technology and methods for going wireless (e.g.,
radio modems, Wi-Fi/IEEE 802.11x, Bluetooth, ZigBee/IEEE 802.15.4, cellular,
infrared/IrDA, and MCU-based wireless security applications)

UPCOMING IN CIRCUIT CELLAR

FEATURES
Energy-Monitoring System, by Dean Boman

Markov Music Box, by Bruce Land

DIY Rotational Inverted Pendulum, by Nelson Epp

COLUMNS
Arduino Survival Guide: Analog I/0, by Ed Nisley

Microcontroller-Based Morse Coding, by Jeff Bachiochi
Quality and Reliability in Design, by George Novacek

Chip Biometrics, by Patrick Schaumont

CIRCUIT CELLAR® = circuitcellar.com

CAD CONNECTED

27
o

PROTEUS DESIGN SUITE VERSION 8

Featuring a brand new application framework, common parts database, live netlist and 3D
visualisation, a built in debugging environment and a WYSIWYG Bill of Materials module, Proteus 8
is our most integrated and easy to use design system ever. Other features include:

» Hardware Accelerated Performance. .
= Unique Thru-View™ Board Transparency. =
= Over 35k Schematic & PCB library parts.
= Integrated Shape Based Auto-router. -
« Flexible Design Rule Management. -
« Polygonal and Split Power Plane Support.

Board Autoplacement & Gateswap Optimiser.
Direct CADCAM, ODB++, IDF & PDF Output.
Integrated 3D Viewer with 3DS and DXF export.
Mixed Mode SPICE Simulation Engine.
Co-Simulation of PIC, AVR, 8051 and ARM MCUs.
Direct Technical Support at no additional cost.

Iahcente r/ \/ \/ \ www.labcenter.com Visit our wehbsite or

Electronics

phone 866 499-8184

Labcenter Electronics North America, 411 Queen St. Newmarket, Ont. Canada L3Y 2G9. for more details
Email: info@labcenter-electronics.com Tel 905.898.0665 Fax 905.898.0683

10
17
138
19
20

26

a1

46

February 2013 - Issue 271

i

PAGE 26

EDITOR'S LETTER
Got Range?
By C. J. Abate

NEW PRODUCTS
MEMBER PROFILE
CLIENT PROFILE
TEST YOUR EQ

Build a Digital Dip Meter
By Stuart Ball

3-D Paint
A Complete Hardware and
Software Package

By William Myers and Guo Jie Chin

Digital Camera

Controller (Part 3)

Build a Generic Front-Panel Board
By Richard Lord

EMBEDDED IN THIN SLICES

Concurrency in Embedded

Systems (Part 5)

Designing Robust Systems with Linux
By Bob Japenga

QUESTIONS & ANSWERS

Engineering & “Pure”

Research

An Interview with Colin O'Flynn
By Nan Price

THE CONSUMMATE ENGINEER
Fault-Tree Analysis
By George Novacek

February 2013

76
80

ABOVE THE GROUND PLANE
Arduino Survival Guide
Digital I/O

By Ed Nisley

THE DARKER SIDE
Introduction to Standing
Waves

By Robert Lacoste

FROM THE ARCHIVES

The Wi-Fi SniFi

Sniffing In and Out of Wireless Networks
By Roy Franz
(Circuit Cellar 157, August 2003)

FROM THE BENCH
QR Coding for Engineers
By Jeff Bachiochi

CROSSWORD
TECH THE FUTURE
Open-Source Hardware for

the Efficient Economy
By Catarina Mota and Marcin Jakubowski

PAGE 41

CIRCUIT CELLAR® * circuitcellar.com

P1CcO

PicoScope’ T
PC OSCILLOSCOPES

PicoScope 2100 Series PicoScope 2200 Series PicoScope 2205 MSO PicoScope 3200 Series

1 Channel 2 Channels + AWG 2 Analogue, 16 Digital Channels 2 Channels + EXT and AWG
10 to 25 MHz Bandwidth 10 to 200 MHz Bandwidth + AWG 60 to 200 MHz Bandwidth
50 to 100 MS/s Sampling 100 MS/s to 1 GS/s Sampling 25 MHz Bandwidth 500 MS/s Sampling
8 bits Resolution 8 bits Resolution 200 MS/s Sampling 8 bits Resolution
(12 bits enhanced) (12 bits enhanced) 8 bits Resolution (12 bits enhanced)
8 to 24 kS Buffer memory 8 to 40 kS Buffer memory 48 S Buffer memory 4 to 128 MS Buffer memory
Price from $206 Price from $262 Price from $658

Price from $658

PicoScope 3400 Series PicoScope 4000 Series PicoScope 6400 Series PicoScope 9200 Series

UPDATED
2012
4 Channels + EXT and AWG 2 Channels + EXT and AWG, 4 + External trigger and 2 Channels
60 to 200 MHz Bandwidth or 4 Channels - AWG or Func. Generator 12 GHz Bandwidth
1 GS/s Sampling 20 to 100 MHz Bandwu.ith 250 to 500 MHz Ba.ndW|dth 5 TS/s (equivalent) Sampling
8 bits Resolution 80 to 250 MS/s Sampling 5 GS/s Sampling 16 bits Resolution
(12 bits enhanced) 12 bits Resolution 8 bits Resolution 4 kS Buffer memory
4 to 128 MS Buffer memory (16 bits enhanced) (12 bits enhanced) Price from $9892
Price from $988 32 MS Buffer memory 128 MS to 1 GS Buffer memory
Price from $823 Price from $3300

Software includes: Measurements, Spectrum analyzer, Full SDK, Advanced triggers, Color persistence, Serial
decoding (CAN, LIN, RS232, I2C, FlexRay, SPI), Masks, Math channels, all as standard. FREE UPDATES

www.picotech.com/PCO498 CALL TOLL FREE: 800 591 2796

ra"d%nsss

Steve Ciarcia
C. J. Abate
Nan Price

Jeff Bachiochi, Bob Japenga,

Robert Lacoste, George Martin,

Ed Nisley, George Novacek,

Patrick Schaumont

Tech the Future explores the solutions for a
sustainable future provided by technology,
creativity and science.

NV
N

= Il F

Issue 271 February 2013

CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by Circuit Cellar
Incorporated, 111 Founders Plaza, Suite 300, East Hartford, CT 06108.
Periodical rates paid at Vernon, CT and additional offices. One-year (12
issues) subscription rate USA and possessions $50, Canada $65, Foreign/
ROW $75. All subscription orders payable in U.S. funds only via Visa,
MasterCard, international postal money order, or check drawn on U.S. bank.

United Kingdom
Wisse Hettinga
+31(0)46 4389428
w.hettinga@elektor.com

USA

Hugo Van haecke

+1 860875 2199
h.vanhaecke@elektor.com

Germany

Ferdinand te Walvaart
+49 (0)241 88 909-0
f.tewalvaart@elektor.de

France

Denis Meyer

+31 (0)46 4389435
d.meyer@elektor.fr

Netherlands
Harry Baggen
+31(0)46 4389429
h.baggen@elektor.nl

Cover photography by Chris Rakoczy—www.rakoczyphoto.com

ISSN 1528-0608

A

Ken Davidson, David Tweed
Hugo Van haecke

Shannon Barraclough

KC Prescott

Jeff Yanco

Debbie Lavoie

Kim Hopkins

GIRGUIT GELLAR

g THE WORLD'S SOURCE FOR EMBEDDED ELECTRONICS ENGINEERING INFORMATION

BORTH=NI

@

Subscriptions

Spain

Eduardo Corral
+34 91 10193 85
e.corral@elektor.es

Italy

Maurizio del Corso
+39 266504755
m.delcorso@inware. it

Sweden

Wisse Hettinga
+31(0)46 4389428
w.hettinga@elektor.com

Brazil

Jo&o Martins

+351214131600
joao.martins@editorialbolina.com

Portugal

Jo&o Martins

+351214131600
joao.martins@editorialbolina.com

Circuit Cellar, P.O. Box 462256, Escondido, CA 92046
E-mail: circuitcellar@pcspublink.com

Phone: 800.269.6301, Internet: circuitcellar.com

Address Changes/Problems: circuitcellar @ pcspublink.com

Postmaster: Send address changes to Circuit Cellar, P.O. Box 462256,
Escondido, CA 92046.

VOICE®(COIL

India

Sunil D. Malekar
+91 9833168815
ts@elektor.in

Russia

Nataliya Melnikova

8107 (965) 395 33 36
nataliya-m-larionova@yandex.ru

Turkey
C x Zeynep Koksal
+90 532 277 48 26

zkoksal@beti.com.tr

South Africa

Johan Dijk

+27 78 2330694 / +316 109 31 926
J.Dijk@elektor.com

China

Cees Baay

+86 (0)21 6445 2811
CeesBaay@gmail.com

US Advertising

Strategic Media Marketing, Inc.

2 Main Street, Gloucester, MA 01930 USA

Phone: 978.281.7708, Fax: 978.281.7706, E-mail: peter @ smmarketing.us
Internet: circuitcellar.com

Advertising rates and terms available on request.

New Products: New Products, Circuit Cellar, 111 Founders Plaza, Suite 300,
East Hartford, CT 06108, E-mail: newproducts @circuitcellar.com

We
now have

Not a member yet?

All Electronics Corp. v v v vv v vvnnvnn s

APCircuitsov i i

Artila Technologies, Inc. 77

Beta Layout, Ltd.o
BusBoard Prototype Systems.
Circuit Cellar 25th Anniversary USB
CleversCope. v v v v v v v v i e v e nas
Comfile Technology
CTIAWIreless v vvvivniniineaenns

Custom Computer Services oo vvvvnn

Elektor . ..o 72,73

EMAC, Inc. v v v 17

Head Office
Circuit Cellar, Inc. 111 Founders Plaza, Suite 300, East Hartford, CT 06108
Phone: 860.289.0800

Copyright Notice

Entire contents copyright © 2013 by Circuit Cellar, Inc. All rights reserved.
Circuit Cellar is a registered trademark of Circuit Cellar, Inc. Reproduction
of this publication in whole orin part without written consent from Circuit
Cellar, Inc. is prohibited.

Sign up at circuitcellar.com

ExpressPCB. ... oo i 59
0 47
Flexipanel, Ltd. 79
FTDIChiD.: o vt ene s C3
Grid Connect, InC. v v oo i 47
Humandata, Ltd. 63
Imagineering, Inc. o i e e C4
Ironwood Electronicsvvut. 78
Jeffrey Kerr, LLC. . oo i 65
Labcenter Electronicso v i i i

Lakeview Reasearch. 65
Logical Devices v i 79
Maxbotix, InC.o i 77
MCC, Micro Computer Control 77
Mental Automation.ot 78

members
in

l. countries.

Microchip Technology, Inc.. .. oo v vt 13
Microengineering Labs, Inc.. 78
Mosaic Industries, Inc. 78
Mouser Electronics, Inc. 1
NetBurner.ovvii v C2
Pico Technology, Ltd.o vivvtt 5
POlOIU COrpas v v e i 39
Reach Technology, Inc. 78
Rigol Technologiesovvvnt. 19
Saelig Co., InC. v v v v i i 1
Technologic Systems 8,9
Tern, INC. + oo i e 79
Triangle Research International, Inc. 79

Not a supporting company yet?
Contact Peter Wostrel (peter@smmarketing.us, Phone 978.281.7708, Fax 978.281.7706)
to reserve your own space for the next issue of our member's magazine.

Disclaimer

Circuit Cellar® makes no warranties and assumes no responsibility or
liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible
variation in the quality and condition of materials and workmanship of
reader-assembled projects, Circuit Cellar® disclaims any responsibility for
the safe and proper function of reader-assembled projects based upon or
from plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes.
Circuit Cellar® makes no claims or warrants that readers have a right
1o build things based upon these ideas under patent or other relevant
intellectual property law in their jurisdiction, or that readers have a

right to construct or operate any of the devices described herein under
the relevant patent or other intellectual property law of the reader’s
jurisdiction. The reader assumes any risk of infringement liability for
constructing or operating such devices.

© Circuit Cellar 2013 Printed in the United States

Embedded Systems

High-End Performance TS-7800
with Embedded Ruggedness 500MHz ARM9

Unbrickable Low power - 4W@5V $229
design 128MB DDR RAM qty:109

512MB high-speed $269

(17MB/sec) onboard Flash qty 1

e 12K LUT customizable FPGA
S ' . N S Internal PCl Bus, PC/104 connector
i 2 host USB 2.0 480 Mbps
< Hoy) Gigabit ethernet = 2 SD sockets
3x faster . P 10 serial ports = 110 GPIO
ani Backesl ; 5 ADC (10-bit) = 2 SATA ports
compatible with TS-72xx : a3
Sleep mode uses 200 microamps
Boots Linux 2.6 in 0.7 seconds

Linux 2.6 and Debian by default

series
starts at

TS-SOCKET Macrocontrollers 9
Jump Start Your Embedded System Design . S

qty 100

$139

qty 1

TS-SOCKET Macrocontrollers are CPU core modules that
securely connect to a baseboard using the TS-SOCKET
connector standard. COTS baseboards are available or design
a baseboard for a custom solution with drastically reduced
design time and complexity. Start your embedded system
around a TS-SOCKET Macrocontroller to reduce your overall
project risk and accelerate time to market. Current TS-
SOCKET products include:

55mm/2.165in.

TS-4200: Atmel ARM9 with super low power
TS-4300: 600MHz ARM9 and 25K LUT FPGA

TS-4500: Cavium ARM9 at very low cost Dual 100-pitise b
TS-4700: 800MHz Marvell ARM with video

TS-4800: 800MHz Freescale iMX515 with video

Secure connection w/ mounting holes
Common pin-out interface

Several COTS baseboards for evaluation & development Low profile w/ 6mm spacing

W Over 25 years in business A Custom configurations and designs w/
M Open Source Vision excellent pricing and turn-around time

;| Never discontinued a product .
A Most products stocked and available
A Engineers on Tech Support for next day shipping

Design your solution with one of our engineers (480) 837-5200

Touch Panel Computers
800MHz with Video Acceleration

Resistive touchscreen, LED backlit display
Gasketed construction

Tough powder coated finish

Fanless operation from -20°C to +70°C
800MHz ARM CPU

256MB RAM, 256MB SLC XNAND Drive

% . series
MicrosD slot Fully enclosed TPC i) * starts at

5K LUT programmable FPGA available Q3 o ; $4 1 5
Dual Ethernet, USB ports gty 100
CAN, R5-232 ports, RS-485

Mono speaker on PCB, stereo audio jack $ 47 9

qty 1
SPI, DIO

\ Industrial Controllers
""T“?y!',g!,?glt Powerful, Rugged, Affordable

250MHz (ARM9) or 800MHz (ARM9 or Cortex-A8) CPU

saries Fast startup (under 3 seconds)

starts at .
Fanless operation from -20°C to +70°C

S 1 99 User-programmable opencore FPGA
qty 100 ; _
Program in Ladder Logic or C

S 229 Debian Linux

qty 1 Modbus support
PoE capable 10/100 Ethernet, USB 2.0 Host Ports

picture of TS-8820-BOX Industrial screw-down connectors

Opto-Isolated DIO, Digital Counters, Quadrature
Technologic Systems now offers three powerful .
computers targeting industrial process control. Upto 46 DIO with PWM

Implement an intelligent automation system at Opto-lsolation available for RS-232, RS-485 and CAN

low cost with a minimal number of components. ;
= DIN mount option

Technologic

z Systems

We use our stuff.

Visit our TS-7800 powered website at
www.embeddedARM.com

February 2013 - Issue 271

[y
o

ROBOTIC WHEEL ENCODER & AMBIENT LIGHT PROXIMITY SENSOR
The 36-Position Quadrature Encoder Set provides rotational feedback for robot wheels. The set was specifically
designed for Parallax’s Motor Mount and Wheel Kit, which is included with the Eddie and MadeUSA robotic platforms. The kit
also can be used with custom robots or mechanical systems with 0.5” axles.
T The encoder set provides two out-of-phase outputs from within a single sensor
assembly. Its 36-position encoder disks, which
Qn resolve to 144 positions with the quadrature sen-
sor output, are incised to grip 0.5” diameter axles.
Key features include low power consumption, dual-
channel outputs that provide speed and directional
information, and a six-pin, single-row header that
accommodates a four- or six-wire interface.
The Si1143 Proximity Sensor is well suited for noncontact gesture recognition in micro-

oy
il

controller applications. Gestures in the up, down, left, right, and center directions can be i Dmmﬁjf;“gmo, ‘
detected by measuring infrared light levels from the three on-board IR LEDs. (- 0 L
The Si143 measures visible and IR ambient light levels, providing a range of operation TI1T PARALAXE Yo

from darkness to full sunlight. The sensor’s easy-to-use interface is compatible with any
microcontroller. Its standard 0.1” header pins enable the sensor to conveniently connect to
breadboard or through-hole projects.

The 36-Position Quadrature Encoder Set and the Si1143 Proximity Sensor both cost $29.99.

Parallax, Inc.
www.parallax.com

HIGH-RESOLUTION PWM UNIT FOR DIGITAL POWER CONVERSION

The XMC4400, XMC4200, and XMC4100 Cortex-based microcontrollers offer a high-resolution PWM unit. Devices in
the XMC4000 microcontroller family use ARM Cortex M4 processors.

With a 150-ps PWM resolution, the XMC4400, XMC4200, and XMC4100 microcontrollers are well suited for digital power
conversion in inverters, switching and uninterruptible power supplies (UPS), and other applications including I/O automa-
tion units, user interfaces (HMI), and logging and control systems.

Like Infineon’s XMC4500 microcontrollers, the XMC4400, XMC4200, and XMC4100 series offer powerful application-opti-
mized peripherals, fast and robust embedded flash technology, an extended -40°C-to-125°C temperature range, and tools
for automatic code generation.

The XMC4000 family includes four series: XMC4500, XMC4400, XMC4200, and XMC4100. The microcontroller families dif-
fer mainly in core frequency, memory capacity, peripheral functions, and number of I/Os. The XMC4400, XMC4200, and
XMC4100 series have a powerful CPU subsystem with 120 MHz or 80 MHz, DSP functionality, a floating-point unit, and fast
flash memory (512, 256 or 128 KB). They feature a 22-ns read time and error-correction code and SRAMs up to 80 KB.
The microcontrollers’ peripherals include high-speed 12-bit ADCs and DACs and integrated delta-sigma demodulator mod-
ules (XMC4400). Communication is provided by Ethernet MAC (XMC4400), USB 2.0, CAN interfaces, and serial communica-
tion channels, which can be individually software-configured as UART, SPI, Quad-SPI, I?S, or I>C. The microcontrollers also
provide a touch interface and an LED matrix display.

The XMC4400, XMC4200, and XMC4100 are supported with the
DAVE 3 integrated development platform, which enables conven-
ient, fast, and application-orientated software development. Third-
party tools can be used to extend the Eclipse-based environment
with free GNU compiler and debugger. DAVE 3 also supports auto-
matic code generation based on predefined software components
(i.e., the "DAVE Apps”). The DAVE Apps are configured in a user-
friendly way via the graphical user interface. DAVE 3 ensures
industrial application developers can use the XMC4000 microcon-
trollers’ functionality with little programming effort. The generated
code can be compiled and debugged directly in DAVE 3 or import-
ed into third-party tools for further processing (currently Altium,
ARM, Atollic, IAR Systems, and Rowley).

Contact Infineon for pricing.

Infineon Technologies
www.infineon.com

CIRCUIT CELLAR® * circuitcellar.com

DIGITAL POTENTIOMETERS WITH HIGH BANDWIDTH
& LOW RESISTANCE TOLERANCE

The AD514x and AD512x series of nonvolatile single-, dual-, and quad-chan-
nel digital potentiometers (digiPOTs) feature a £1% resistance tolerance to
improve component matching in industrial and communication control systems.
The 11 digiPOTs in the AD514x and AD512x series achieve a high 3-MHz band-
width, which enables fast system response time.

The nonvolatile digiPOT series meet a range of system-level requirements in
256- or 128-TAP, SPI or I12C interfaces, leaded and leadless packaging, all of
which feature 4-kV ESD pro-
tection. The devices offer a
low temperature coefficient
performance over a -40°C-
to-125°C temperature
range.

The AD514x and AD512x
digiPOTS are available in a
3-mm X 3-mm LFCSP pack-
age option for board sav-
ings. Contact Analog Devices
for pricing.

}l—l 48mm —;—'{

han

= —
o —
-3 -

b -

o [u
31
[NANLos t—“mzq
DEVICES

AD5143

Quad Channel

-

e

ANALOG
DEVICES

- AD5142 .

=== Quad Channel
R * Dual Channel

Analog Devices, Inc,
www.analog.com

. ansre
11 Generics, 34 Products: 11

+ Single, Dual or Quad y

+128 or 256 Tap ¢ SPI or I?C Interface

iR
ARNNNHNN

REAL-TIME CLOCK FOR AUDIO AND CONTROL DEVICES

The Barix Real-Time Clock (RTC) accessory helps ensure audio and control
devices continue operating uninterrupted during network failures. The devices
help keep mission-critical operations for broadcast radio, streaming media,
building automation, and other applications on time.

The self-sustaining reference clock plugs into any device with an RS-232 seri-
al port, including Barix IP audio and control products. The Barix RTC maintains
time, even when unpowered, for years. This enables the RTC to provide time
information immediately after a device startup, even without a network-based
time reference.

The Barix RTC enables devices to work offline without network connection,
playing out audio messages and time-sensitive content on time. Similarly,
broadcasters streaming syndicated programs with local network IDs, jingles,
ads, and promotions can trigger scheduled events without affecting their on-air
content.

The RTC can be used by IP control devices to gain independence from net-
work time references, continuing to switch lights and boilers on and off if the
network fails. This :
ensures energy-saving
techniques for schools,
businesses, and other
facilities continue
without disruption.

Contact Barix for pricing.

Barix
www.barix.com

circuitcellar.com <*® CIRCUIT CELLAR®

25MHz Ceope

Remarkable low
cost 25MHz

2 channel plus
trigger USB
bench scope with 8 inch
full color LCD display. Spectrum
analysis and autoscale functions.

PDC5022¢ £279

iPhone Ceope
5MHz mixed signal

oscilloscope adapter
for the iPhone, iPad and iPod Touchl

A FREE iMS0-104 app is available
100MHz Seopa

benchscope with m
scope carry case! New low pricel

/1
-l
iy
2y

R
+ 4
Qﬁq”

LT
[

iMC0-104 ¢297.99
16Sa/s 2-channel
USB memory port. Includes a FREE

J/

" 60MHz Seope
',',...g 60MHz 2 channel

for download from Apple App Store.
High-end 100MHz
1MSa memory and =

091 102E ¢3299

digital scope with a
500 MSa/s sample rate, 10MSa
memory & 8" color TFT-LCD screen.

eDLeHD62 £299
World’s Smallest .'

The world's smallest
MSOI This DIP-sized
200kHz 2 channel scope
includes a spectrum analyzer and
arbitrary waveform generator. It
measures only 1 x 1.6 inches in sizel

Xprotolab €49

__’@-,J 100MHz MCO
2 channel 100MSa/s
oscilloscope and 8-ch logic analyzer
USB 2.0 and 4M samples storage
per channel with sophisticated

triggering and math functions.

CC328A ¢ 1359

Handheld 20MH2

Fast, accurate handheld
20MHz 1-ch oscilloscope. SSEES
- 100 M/S sample rate [[ZS

- 3.5 in. color TFT-LCD |
- 6 hour battery life il
Inc. rugged ampac?-resns‘run’r case

HDC1021M £299.95

More selections at:

Follow us on:

www.saelig.com &}
"ﬂm mg

~ Saelig?

February 2013 - Issue 271

February 2013 - Issue 271

[y
N

NEW TOOLS FOR WIRELESS CONNECTION TO ZigBee

The A2530x24xxx series, Anaren’s new family of Anaren Integrated Radio (AIR) modules, are specifically designed to
help OEMs develop products that wirelessly communicate in compliance with the ZigBee standard. Based on the Texas
Instruments (TI) CC2530 low-power RF system-on-a-chip (SoC), which operates using TI's Z-Stack firmware, the family of
AIR modules is bundled with AIR Support for ZigBee, which includes time-saving AIR-ZNP firmware (including more than
30 code examples), precertification to applicable global, regulatory standards, and development tools (e.g., Anaren’s
BoosterPack for TI MSP430 and Stellaris LaunchPad development kits).

The A2530x24xxx devices require minimal RF engineering and ZigBee experience. They are easy to program for a shortened
design cycle. The devices are available with an integral or connectorized antenna and a tiny, 2.5-mm x 11-mm x 19-mm
standardized footprint. The devices are pre-certified to FCC/IC and compliant with ETSI. There is a choice of range-extender or
non-range extender modules. The A2530x24xxx devices’ additional features include a 2.4-GHz IEEE 802.15.4-compliant RF
transceiver (TI's CC2530), a wide 2.2-to-3.6-V input voltage range, and excellent receiver sensitivity and robustness to
interference (-95 dBm average).

Anaren has also introduced a BoosterPack featuring its new family of modules. The CC2530 BoosterPack Kit helps OEM
engineers develop wireless applications using a TI LaunchPad for MSP430 or a Stellaris microcontroller. The BoosterPack
provides “out-of-the-box” wireless connectivity to easily develop applications based on
the ZigBee standard. It also includes AIR-ZNP firmware solution (based on TI's Z-
Stack).

The kit includes three A2530E24A AIR Module BoosterPacks for connection to TI's
MSP430 or Stellaris’s LaunchPad development kit (LaunchPad not included). Each
BoosterPack includes an on-board MSP430G2553IN20 Value Line microcontroller, pre-
flashed with Anaren’s AIR-ZNP firmware (based on TI's Z-Stack for the ZigBee standard).

Contact Anaren for pricing.

Anaren, Inc.
www.anaren.com

ENERGY-HARVESTING DISCOVERY KIT

The M24LR Discovery Kit helps you design battery-free electronic applications that can exchange data with ISO15693-
compatible NFC-enabled smartphones or radio-frequency identification (RFID) reader-writers. The kits help create and inte-
grate energy-autonomous data collection, asset tracking, or diagnostics capabilities in applications, including phone and
tablet accessories, computer peripherals, electronic shelf labels, home appliances, industrial automation, sensing and moni-
toring systems, and personal healthcare products.

With a combination of industry-standard serial bus (I?’C) and contactless RF interfaces, the M24LR EEPROM memory is
capable of communicating with host systems “over-the-wire” or “over-the-air.” The M24LR’s RF interface can convert ambi-
ent radio waves emitted by RFID reader-writers and NFC phones or tablets into energy to power its circuits and enable
complete battery-free operation.

The M24LR Discovery Kit includes an RF transceiver board with a 13.56-MHz multiprotocol RFID/NFC transceiver
(CR95HF) driven by an STM32
32-bit microcontroller, which
powers and wirelessly commu-
nicates with a battery-less
board. This board includes ST's
dual-interface EEPROM memory
IC (M24LR), an ultra-low-power
8-bit microcontroller (STM8L),
and a temperature sensor
(STTS75).

The M24LR Discovery Kit
costs $17.50.

STMicroelectronics
www.st.com

CIRCUIT CELLAR® * circuitcellar.com

We've got you covered!

8116|320

PIC® MICROCONTROLLERS

Feeling locked in?

Forced architecture and other
compromises should not constrain your
design. With Microchip’s 8-, 16- and 32-bit

solutions, tools and compilers, you won't have to.

The choice is easy when you think about it.

Visit Microchip.com/pic today.

@ MICROCHIP

AERELL MIHONt COWLEOWIE

February 2013 - Issue 271

[y
S

E-FIELD-BASED 3-D GESTURE CONTROLLER

The configurable MGC3130 is an electrical-field (E-field)-based 3-D gesture controller, providing low-power, precise, fast,
and robust hand-position tracking with free-space gesture recognition. The controller features Microchip’s GestIC technolo-
gy, which enables intuitive, gesture-based, non-contact user interfaces for many end products.

The MGC3130 includes 150-dpi, mouse-like resolution and a 200-Hz sampling rate to sense fast hand and finger motions.
It has a super-low-noise analog front-end for high-accuracy interpretation of electrode sensor inputs. The controller’s con-
figurable Auto Wake-Up on Approach at 150-uW current consumption enables always-on 3-D gesture sensing in power-con-
strained mobile applications.

The MGC3130’s additional features include automated self calibration, 32-bit digital signal processing for real-time pro-
cessing of x/y/z positional data, integrated flash memory to easily upgrade deployed products, and a 70-to-130-kHz E-field
with frequency hopping to eliminate RF interference.

GestIC technology achieves high gesture-recognition rates through Colibri Suite, which is a library of 3-D gestures for
hands and fingers that is preprogrammed into the MGC3130. The Colibri Suite combines a stochastic Hidden Markov model
(HMM) and x/y/z hand-position vectors to provide recognized 3-D hand and finger gestures. Examples include Wake-Up on
Approach, Position Tracking, Flick Gestures, Circle Gestures, and Symbol Gestures to perform functions (e.g., on/off, open
application, point, click, zoom, scroll, free-space mouseover, etc.). The chip also provides prefiltered electrode signals for
additional functionality.

GestIC technology uses thin sensing electrodes made of any conductive material, such as PCB traces or a touch sensor’s
indium tin oxide (ITO) coating, to enable invisible integration behind a device’s housing. In addition, the technology provides
100% surface coverage, eliminating “angle-of-view” blind
spots. With a detection range of up to 15 ¢cm, the
MGC3130 is well suited for products used in close prox-
imity for direct user-to-device interaction.

In addition, Microchip’s Sabrewing MGC3130 single-
zone evaluation kit enables development with the
MGC3130 by providing a 5” or 7" selectable electrode
size. The kit comes with the AUREA graphical user
interface (GUI), which is available for a free download
at www.microchip.com/get/DST9. The GUI enables
designers to easily match their system commands to
Microchip’s Colibri Suite. The evaluation kit costs
$169. The MGC3130, featuring GestIC technology, is
available in a 5-mm x 5-mm, 28-pin QFN package.

The controllers cost $2.26 each.

Microchip Technology, Inc.
www.microchip.com

CONTROLLER FOR SMOOTH SERVOMOTOR RESPONSE

The SMC-01 is a manual servomotor controller for a single servo-

motor. The controller performs via an on-board potentiometer. A
Microchip Technology PIC12F683 microcontroller is at the heart of
the SMC-01. The potentiometer connects to the microcontroller to
proportionally control the servomotor’s rotation.

The servomotor’s shaft is capable of responding as fast and as far
as the potentiometer knob is rotated. A universal three-pin header
enables easy connection to the servo motors. They are simply
plugged into the board. The circuit is controlled by an inexpensive,
eight-pin microcontroller and powered by a 9-V battery.

The unit can be purchased as a kit or fully assembled. The SMC-01
kit costs $24.95. The fully assembled SMC-01A costs $34.95.

Images SI, Inc.
www.imagesco.com

CIRCUIT CELLAR® < circuitcellar.com

» CUWIN5200

Windows CE 6.0 Touch Controller

CLUWIN

The CUWIN is a series of
Windows CE touch controllers that
are more cost-effective than a PC,
but with more features than

an HMI touch screen.

Create sophisticated applications
with C++ or any .Net language.

533MHz ARM CPU

128MB SDRAM & Flash

SD Card Support

Ethernet, RS-232/485
USB, Audio Out

Windows Embedded CE 6.0

The CUPC is a series of industrial
touch panels with all the features
of a modern PC for the most
feature-rich user experience.

ATOM N270 1.6GHz CPU
2GB RAM

320GB HDD

SD Card Support

Color Display (1024 x 768)
RS-232, Ethernet

USB, Audio Out

Windows XPe/XP Pro

CUPLC k-

10.2”

pws Embedded CE6.0

P CUWINB300

C-Programmable Modular Industrial Controller

CE FE €

BASIC with LADDER LOGIC CONTROLLER

Integrated CUBLOC Controller and I/O Board

CB210

The CB210 is an inexpensive, integrated CUBLOC controller and
1/0 board programmable in both BASIC and Ladder Logic.

I/0 Ports x20 10-bit A/D x6

PWM x3 RS-232 x1

80KB Program Memory 3K Data Memory

p—

\

Industrial Touch Panel PC with ATOM Processor

COMFILE

» CUPC-P220

1175 Chess Dr., Suite F, FOSTER CITY, CA 94404
call : 1-888-9CUBLOC (toll free)
1-888-928-2562

TECHNOLOGY email : sales@comfiletech.com

MOALCDO

The MOACON is a modular,

C programmable, ARM-based
automation controller designed for
industrial environments.

Choose from a diverse, feature-rich
selection of modules including:
Digital 1/0

Analog 1/0

RS-232/485

Motor Control

Ethernet

High-speed Counter & PWM

The CUSB is a series of compact,
CUBLOC-integrated, industrial I/0
boards programmable in both
BASIC and Ladder Logic.

CUBLOC CB280 Core Module
80KB Program Memory

3KB Data Memory

DC 24V Inputs x9~16

A/D Inputs x2~6

Relay Outputs x6~16

PWM x2~6

High-speed Counters x0~2
RS-232/485 x1~2

CUSB

Integrated Industrial Controllers

www.comfiletech.com

February 2013 - Issue 271

[y
(=]

DIGITAL CLASS D AUDIO DEVELOPMENT FOR 32-BIT EMBEDDED DESIGNS

The Class D ToolStick kit is a cost-effective USB-based evaluation kit that enables developers to add digital Class D
audio capabilities to 32-bit embedded designs based on Silicon Labs’s SiM3U1xx Precision32 microcontrollers. The kit helps
developers upgrade basic “buzzer/beeper” alert sounds used in personal medical devices, fitness equipment, high-end toys,
small appliances, and other consumer electronics products to sophisticated voice prompts, music, sound clips, and stream-
ing audio.

The SiM3U1xx microcontrollers include the following: a 300-mA, high-drive 1/0 that can directly drive a small speaker; a
crystal-less USB transceiver compatible with the USB audio interface; two 250-ksps, 12-bit ADCs; and an I°S receiver that
supports audio streaming from a PC, a portable music player, or a range of 1°S-enabled audio devices. The only external com-
ponents required to drive Class D audio from SiM3U1xx microcontrollers are inexpensive inductors, some capacitors, and fer-
rite beads.

You can use the ToolStick to add capacitive-touch buttons and sliders to 32-bit embedded systems. The SiM3U1xx micro-
controllers’ high-drive I/0s with PWM can be used to directly drive other components (e.g., small motors), without using
separate power field-effect transistors (FETs).

The Class D ToolStick kit is powered from USB using the SiM3U1xx microcontroller’s internal 5-V regulator. The board
uses a simple speaker to play music from a stereo jack, a computer, or a recorded message. The ToolStick provides four
modes of operation. The microcontroller’s on-chip ADCs are used to sample data from a
portable music player or USB audio streaming from a PC. The kit uses a common audio
compression algorithm to play prerecorded sound clips stored from on-chip flash memory)
and it uses an audio-compression algorithm as a voice recorder that stores data in flash. .»;._ _
Capacitive-touch buttons and control volume with a capacitive-touch slider are used to SIM3U T
handle mode transition. -

The Class D ToolStick evaluation kit comes complete with hardware Gerber files and
software, which helps streamline the process of adding Class D audio to embedded
applications. The ToolStick features a built-in USB-based debugger/programming
interface and accessible pins for easy prototyping. The ToolStick debug interface is
fully operational with Silicon Laboratories’s complimentary Precision32 IDE,
compiler, AppBuilder crossbar configuration software, and Keil toolchains.

The Class D ToolStick evaluation kit includes full source code and
implements a Class D amplifier demonstration using a small-footprint,
40-pin, 6-mm X 6-mm package SiM3U1xx microcontroller. The kit
costs $35.

Silicon Laboratories, Inc.
www,silabs.com

MCUs WITH INTEGRATED USB ENABLE HIGH-SPEED CHARGING

The RL78/G1C group of 16-bit microcontrollers conforms to the USB Battery Charging Specification, Revision 1.2. The
microcontrollers provide USB host/function interfaces, which support full-speed and low-speed USB communication. The
USB interface is used between PCs and PC peripheral equipment and also as a general-purpose interface for consumer and
industrial equipment in applications such as smartphone accessories, portable healthcare devices, AV accessories, and
game and industrial equipment.

The microcontrollers’ battery-charging function enables high-speed charging up to 1.5 A. They also integrate a 1% accu-
rate high-speed oscillator.

The RL78/G1C microcontroller group is the first RL78 microcontroller family that includes USB host/function and can be easily
deployed in existing systems utilizing other RL78 family products. The integration of USB functionality alongside RL78's smart
peripherals enables them to achieve 71 uA/MHz in full operation and 0.23 pA in
Stop mode (RAM retained). The first series within the RL78/G1C microcontroller
group features 32-to-48-pin devices in packages as small as 5 mm x 5 mm, up to
32 KB of flash, and 5.5 KB of on-board RAM,

Samples of the RL78/G1C group of microcontrollers are available. Prices vary
by USB peripheral functions and USB host functions including packages and
number of pins. For example, the 32-pin LQPF package R5F10KBCAFP device
with USB peripheral function costs $1 per unit, in 10,000-unit quantities.

Renesas Electronics Corp.
www.renesas.com

CIRCUIT CELLAR® * circuitcellar.com

Alexander Pozhitkov

Member Name: Dr. Alexander Pozhitkov

Location: Seattle, WA

Education: MS in Chemistry, Moscow State University,
PhD in Genetics and Bioinformatics, University of Cologne,
Germany

Occupation: Research scientist

Member Status: He has been a subscriber for a year.
Technical Interests: Alex is interested in low-level hard-
ware programming and high-voltage electronics, including
vacuum tubes.

Most Recent Embedded Tech-Related Acquisition: He
recently received a single-board fanless PC with a solid-
state hard drive as a gift.

Current Projects: Alex is further developing the NakedCPU

platform he wrote about in his two-part article series, “The
NakedCPU,” (Circuit Cellar 259-260, 2012).

AIE. AP CIRCUITS

As low as...

$9.95

each!

Two Boards
Two Layers
Two Masks
One Legend

Unmasked boards ship next day!

www.apcircuits.com

VISA @amj RayRal i MEMBER
— [EEERES WolSrhRs

CIRCUIT CELLAR® * circuitcellar.com

Thoughts on the Future of Embedded Technology:
Alex says he’s worried that embedded solutions are
becoming less transparent. He remembers working
with one system that had several DVDs of examples
and libraries but it didn’t have a comprehensive guide
to the system'’s architecture. “"As a researcher and
someone who wants to get to the bottom of things,
such a situation is frustrating. This is certainly my
personal researcher’s view. I am not commenting on
the application side of increasingly complicated
embedded systems.”

System on Module
SoM-3517

*TI ARM Cortex-AB 600 MHZ Fanless Process
*Upto 512 MB of DDR2 SDRAM

*Up to 1GB of NAND Flash

*Up to 2GB of eMMC Flash

*2 High Speed USB 1.1/2.0 Host ports

*1 High Speed USB 2.0 0TG porti . =

* 4 Serial Ports, 2 12C and 2 SPI ports ™

* Processor Bus Expansion
*10/100'BaseTiFastiEther

*CAN 2.0 B Controller,

* Neon Vector Floating Point Unit

* 24-bit DSTN/TFT LCD Interface (i

*2D/3D Accelerated Video w/ Resistive Touch - Al

* Small, 200 pin SODIMM form factor (2.66 x 2.375") 2

may be
product

Phone: (618) 529-4525 » Fax: (618) 457-0110 » Web: www.emacinc.com

MEMBER PROFILE

February 2013 - Issue 271

[
N

CLIENT PROFILE

Anaren, Inc.

Client: Anaren, Inc. (www.anaren.com/AIR) Exclusive Offer: Circuit Cellar readers in the US, Canada, and
Europe can enter to win a free CC2530 BoosterPack kit for ZigBee

Location: 6635 Kirkville Road, Syracuse, NY 13057 applications ($100 value, plus there will be no charge for shipping
this kit). To participate, send an e-mail to AIR@anaren.com before

Contact: AIR@anaren.com midnight (EST) March 31, 2013, with “2013 Circuit Cellar offer” in

the subject line. The e-mail must include: Name, Title, Company,
Company Website, Complete Shipping Address, and Telephone Num-
ber (for shipping confirmation). More details on the kit's content and
benefits are available at www.anaren.com/air/cc2530-boosterpack-
kit. No purchase necessary. Void where prohibited.

Embedded Products/Services: Anaren Integrated Radio (AIR)
modules are tiny, surface-mountable, pre-certified transceiver
modules based on Texas Instruments’s (TI) low-power RF
chips—and they are designed to ease development of wireless
functionality for non-RF savvy OEMs. More information is avail-
able at www.anaren.com/AIR.

Product Information: AIR modules reduce time and costs
associated with adding wireless capability to a wide range of
electronic products, given that they
are easy-to-implement (e.g., small
format, SMT technology), pre-certified
to FCC, 1C, or ESTI (saving many cer-
tification expenses), and supported by
a range of development tools (e.g.,
the new CC2530 BoosterPack kit for
development of ZigBee standard
applications using TI's MSP430 or
Stellaris LaunchPad kits).

Circuit Cellar prides itself on presenting readers with information about
innovative companies, organizations, products, and services relating to| ‘
embedded technologies. This space is where Circuit Cellar enables clients

to present readers useful information, special deals, and more.

Get PUBLISHED. Get NOTIGED. Get PAID,

Circuit Cellar feature articles are contributed by professional engineers, academics, and students from

around the globe. Each month, the editorial staff reviews dozens of article proposals and submissions.

Only the best make it into the pages of this internationally respected magazine.

Do you have what it takes?

Contact C. J. Abate, Editor-in-Chief,

today to discuss the embedded design projects
and programming applications
you've been working on and
your article could be featured
in an upcoming issue

of Circuit Cellar magazine.

editor@circuitcellar.com

CIRGUIT CELLAR

‘ Fe|bruary 2013 - Issue 271

[
o0

CIRCUIT CELLAR® < circuitcellar.conl\

CONTRIBUTED BY
DAVID TWEED

February 2013

Answer 1—Yes, given a few basic capabilities, it is possible XIS e Rield increased by the time spent in the “master” ISR. This can be
to implement multiple levels of interrupt priority in software. Issue 270 a problem in time-critical systems. This scheme enables

The basic requirements are that it must be possible to reen-
able interrupts from within an interrupt service routine (ISR) and that
the different interrupt sources can be individually masked.

Answer 2—In normal operation, all the interrupt sources are
enabled, along with the processor’s global-interrupt mask.

When an interrupt occurs, the global interrupt mask is disabled
and the “master” ISR is entered. This code must (quickly) determine
which interrupt occurred, disable that interrupt and all lower-priority
interrupts at their sources, then reenable the global-interrupt mask
before jumping to the ISR for that interrupt. This can often be facili-
tated by precomputing a table of interrupt masks for each priority
level.

Answer 3—For one thing, the start-up latency of all the ISRs is

What's your EQ? The answers are posted at

circuitcellar.com/eq/. You can contact the

quizmasters at eq@circuitcellar.com.

NEW! Ds2000

interrupts to be nested, so the stack must be large enough
to handle the worst-case nesting of ISRs, on top of the worst-case
nesting of non-interrupt subroutine calls.

Finally, it is very tricky to do this in anything other than Assembly
language. If you want to use a high-level language, you'll need to be
intimately familiar with the language’s run-time library and how it
handles interrupts and reentrancy, in general.

Answer 4—yYes, on most such processors, you can execute a subrou-
tine call to a “return from interrupt” instruction while still in the mas-
ter ISR, which will then return to the master ISR, but with interrupts
enabled.

Check to see whether the “return from interrupt” affects any other
processor state (e.g., popping a status word from the stack) and pre-
pare the stack accordingly.

Also, beware that another interrupt could occur immediately
thereafter, and make sure the master ISR is reentrant beyond that
point.

Contributed by David Tweed

Dlgltal Oscilloscopes

Start'“g at COMPARE & SAVE
vs Tektronix TDS2000C

%839

4ircuitce|lar.com ® CIRCUIT CELLAR®

_,\-'
N Our latest Best-in-Class

Scope offers an unmatched
feature/value package!

Now there’s a 2 channel scope with a
dynamic feature-set and an extremely

low noise floor to help you capture smaller
signals... starting at only $839! That's the
newest member of our market-redefining
family of oscilloscopes, the DS2000!

This fast and versatile instrument covers
frequencies up to 200 MHz with two
channels and has a wide vertical range
(500uV/div~10V/div) for the best view of
your smallest signals. Add a 2 GSa/s max.
sample rate and 14 Mpts. of memory depth
to its user-friendly interface and 8 inch
WVCA display and you've got a scope
that delivers unparalleled performance!

RIGOL

Beyond Measure

;

IN3IILONO DNIYIINIONS

! F+bruary 2013 - Issue 271

—
~
o~
(]
3
[0
wn
—
I
™
~—
o
~N
>
c
©
>
s
Kea)
()]
(18

Wny

'35 RECEE

f

by Stuart Ball (USA)

Build a Digital Dip Meter

A dip meter is a handy piece of test equipment typically used to check a device’s
resonant frequency or as a signal source to tune receivers. This article describes
how to use a microcontroller to digitize a dip meter’s display and explores how to
maintain functionality when converting a design from analog to digital.

dip meter, originally known

as a grid-dip meter, is a
piece of test equipment that goes back
to the early days of amateur radio. It
consists of a tunable RF oscillator with
the tuning coil exposed outside the
chassis. When the coil is brought near a
resonant circuit (e.g., an inductor-
capacitor tank circuit) and when the
oscillator is tuned to the same frequen-
cy as the resonant circuit, the circuit
will draw energy from the oscillator.
This results in a dip of a meter

vacuum tube and the meter is typically
in the gate circuit (if the transistor is a
FET) or the base or collector (if the
transistor is a bipolar type). Figure 1
shows a typical schematic for a transis-
tor dip meter using an MPF102 FET. The
meter is in the FET's gate circuit.
Although the schematic shows the
meter’s negative side connected to the
gate circuit and the positive side
grounded, it is not wired backward. Due
to this circuit’s self-biasing nature, the

gate voltage is negative while the circuit
is oscillating. The oscillator sine signal
appears at the gate, but it is shifted
below ground so the average (DC) level
is negative. C5, the capacitor across
potentiometer RV1, filters out the RF
leaving the negative DC value applied
across the meter.

A dip meter’s typical purpose is to
check the resonant frequency of an LC
tank circuit, crystal, or antenna. Dip
meters can be used as signal sources
for tuning receivers. I have even
used one as a local oscillator for

that is in the oscillator’s grid cir-
cuit (in an older vacuum-tube
design). The coils plug into the
dip meter so different coils may
be used for different frequency
bands.

The dip meter’s coil is part of a
tuning circuit consisting of the L
coil and a variable capacitor. The
variable capacitor is connected to
a dial on the front of the chassis
that is marked with the oscilla-
tor's frequencies. When the
meter “dips,” indicating the dip
meter oscillator is at the same
frequency as the resonant circuit,
you can read the frequency from

Il WPF102
©) 11 Oscillator

an RF mixer circuit.

Dip meters are simple to build
and use. Thousands have been
bought, constructed from kits, or
built from scratch by amateur
radio operators over the years.
Fewer amateurs build their own
equipment now and many of the
dip meter’s uses have been taken
over by other equipment (e.g.,
inexpensive frequency counters).
In addition, many circuits that dip
meters used to measure (e.g., LC
tanks) are now implemented with
ceramic filters or other methods.

Why discuss an obsolete tool

the dial.
In a more modern dip meter, a
transistor is used instead of a

Figure 1—Here is a typical analog dip meter circuit's schematic.
The 100-uA meter in the gate circuit dips when the oscillator is
tuned to the same frequency as the circuit it is measuring.

for amateur radio in a magazine
that isn’t necessarily oriented to
radio amateurs? The answer is

CIRCUIT CELLAR® < circuitcellar.com

Figure 2—This is a dial from an old homemade analog dip meter. Note the
compression of the frequency bands to the end of the dial with the higher
frequencies.

straightforward: because this project uses a microcontroller
to digitize a dip meter’s frequency display, which solves
several problems to using dip meters. Consequently, this
article provides an instructive look at what is needed to
convert a design from analog to digital while retaining the
original functionality. It also demonstrates some issues and
obstacles that can be solved by adapting an older analog
design to digital.

THE OLD WAY OF DOING THINGS

Although the dip meter is a simple circuit with a simple
concept, it does suffer from some drawbacks. I will discuss
each of these in detail.

Frequency pulling: This is one of the most problematic
issues in dip meter use. When the dip meter’s coil is brought
near a resonant circuit, the resonant circuit draws energy
from the oscillator. It also pulls the oscillator frequency. In
some cases, the resonant circuit can pull the oscillator by
several megahertz. There are some ways around this. Usual-
ly, you try to couple the oscillator to the resonant circuit as
loosely as possible by increasing the distance between the
oscillator coil and the resonant circuit’s coil. This reduces but
does not eliminate the issue, and it reduces the dip meter’s
sensitivity so the dip is less pronounced and harder to see.

Even with minimal coupling, there is some frequency shift.
And, since the frequency markings on the dip meter dial are
fixed, you do not know how much the frequency has been
shifted.

Bandspacing: A dip meter’s dial is usually circular or semi-
circular. Figure 2 shows a typical dial from a homemade
meter. There are only so many bands that can be shown on
the dial. So, if there is room for eight bands on the dial, then
only eight coils can be made and only eight frequency ranges
can be used. The typical frequency range using a common
variable capacitor is about 2:1, so for a dip meter that is
going to operate from 1 to 100 MHz, you might have seven

circuitcellar.com * CIRCUIT CELLAR®

bands like this:

1-2 MHz, 2-4 MHz, 4-8 MHz, 8-16 MHz, 16-32 MHz, 32-64 MHz,
64-128 MHz

If you were building a dip meter like this, you would actual-
ly put in a little overlap. So, the second band might be 1.9 to
3.8 MHz so it overlaps the first band, the third band would be
3.6 to 7.2 MHz, and so on. But either way, if you wanted to
have expanded tuning over the range of, say, 4 to 4.5 MHz,
you would need another frequency band on the dial. You
would quickly run out of dial space if you did this for more
than one or two frequency bands.

Dial compression: Because of the way variable tuning
capacitors work, the frequencies tend to be compressed at
one end of the dial. Figure 2 shows that the first third of the
frequency span takes up half the dial and the remaining two
thirds are compressed into the last half of the dial. This
makes the higher frequencies harder to read.

Dial resolution: It can be difficult to read the frequency
precisely due to the inability to show more than a limited
number of lines on the dial and the parallax of reading the
frequency from a tuning dial connected to the variable capac-
itor’s shaft.

Calibration: This is not a problem for a purchased meter,
but if you were building a meter from scratch, you would
have to calibrate the dial. This means you need a relatively

Photo 1—This digital dip meter prototype shows an external LC circuit and
the various tuning coils. The block of wood is used so the test circuit will be
the same height as the dip meter coil.

February 2013 - Issue 271

—
~
o~
(]
3
[0
wn
—
I
™
~—
o
~N
>
c
©
>
s
Kea)
()]
(18

Figure 3=The circuit uses

us
an Atmel ATmega8535 4V O T IN out it
microcontroller in a PLCC-44 To Osaillator Lo J_CS GND ;b _135 _lgs Jgs
78M05
package. 9VDC IN 4.7 47 0.01p 0.01y 0.014
RS
P 10k U1 = = =
g R1
% PA7 (AD7) vee ?;‘ o8 =
—2=] PA6 (AD6) voe : 22
Ré —557 PAS (ADS) VCC |25
22k —{ Pada aDy) Avce (2 +| 108,16V Jd2
— PAS (AD9) AREF =10 oF
—{ PA2 (aD2) N =10 OT5
—21{Pa1 (aD1) *RESET .o_oll
PAO (ADO) R
o7 (XCK/TO) PBO [5— B
8 (1) PBA | +5
ooty o= (AINO/INT2) PB2 —
- o= - (AIN1/0CO) PB3 [FE—
= o7 o 2 Po7 (T0SC2) (SS) PB4 (2
T Ds | o 21 POS (TOSCT) (MOSI) PBS 1
D5 | o1 =51 Pcs (MISO) PES |5
04 | o5 £ Poa (SCK) PB7
D3 | o 281 pos -
D2 | o £ P2 . I
D1 [o2 221 PC1 (SDA) XTAL1 i
g4 +5 D0 | O PCo (SCL) X1 33,
Freq [045— -CE | o - P
Freq | o+2— READ/-WRITE | 012 1 |—‘ PD7 (0C2) ‘:MH s
+5 [01 DATA/-CODE | O 1 5] PDS (0P 1) - 1SNz |
GND [© o S PDS (OC1A) XTAL2 {
Modulation Drive | 042 ot —&1{ D4 cc1B) - 55
Gate Signal | © L o4 —={ PDS (INT1) GND =5 P
LcD —&{ P2 (NTo) N g
—_ =+ R4 = PD1 (1xD) GND 1=
= = 1k 151 PD0 (RxD) GND
S RS

ATmegas535

LCD, not front of LCD.

value as needed,

Note: J3 pin numbering matches LCD, not connector.
Actual connector pin numbering on connector

Buffered oscillator signal 1 CLK Qo i 13 “OLK QO 1
Ql al fg—
5 S
Q2 Q2
is reversed because LCD header is on back of 21w as Fo— 2lve oz F2—
74HC393 74HC393

R6: 2.2k 0 47k, as needed to adjust LCD contrast.
Some LCDs do not need R8. Install and adjust

accurate receiver, oscilloscope, or fre-
quency counter to calibrate each band.

NEW SOLUTIONS

This project’s circuit solves most of
those problems by using an LCD to dig-
itally display the frequency. I will now
detail how each of the problems are
resolved.

Frequency pulling: The resonant cir-
cuit will still pull the frequency, but
since the LCD directly reads the actual
frequency, you know exactly how much.
When I tested the prototype, I was sur-
prised at how much a crystal or reso-
nant LC circuit would pull the oscillator
frequency.

Bandspacing: Since there is no dial,
there is no limitation on the number of
coils. Consequently, you can have coils
for much smaller bandwidths that will
enable more precise frequency tuning.
In the prototype circuit, I bridged the
coil for 6.7 to 15.5 MHz with a 56-pF
capacitor and the frequency span
became 4.8 to 6.3 MHz. So, the new
tuning range is 1.3:1 instead of 2.3:1.

Dial compression, dial resolution, and
calibration: The digital meter has no
dial, so there are no compression or
resolution issues and no calibration is
needed. It is true that the compression
effect is still there. The last half of the

tuning arc is still the last two thirds of
the tuning range. But the frequency can
be directly read, so this is more a prob-
lem of manual dexterity than accuracy.

CIRCUIT COMPLEXITY

These improvements do come at a
cost, of course. Some of the drawbacks
are detailed below.

Increased circuit complexity: Instead
of a simple, single-transistor circuit, the
circuit has four transistors, an additional
regulator, a microcontroller, a crystal, and
assorted other parts. In addition, the
microcontroller firmware must be devel-
oped.

Increased design complexity: The orig-
inal circuit can operate to about 200 MHz
if carefully constructed. The only limiting
factor is the transistor itself and the cir-
cuit layout. For the digital design, the
maximum frequency can be limited by
the oscillator transistor, the microcon-
troller's divider, and the buffer amplifier.
In the prototype, the divider IC limits the
maximum operating frequency to about
100 MHz.

CONSTRUCTION

Photo 1 shows the digital dip meter.
The schematic is shown in Figure 3 and
Figure 4. The circuit is built on three pro-
totype boards so everything fits in the

case. You could build it on one board, but
you might find it difficult to get the circuit
to fit neatly into the case since the LCD
and the tuning capacitor are at different
heights.

All components are standard 0.25-W
resistors, 10% or 20% capacitors at 25
or 50 V. The transistors were TO-92.
The Texas Instruments (TI) UA78LO5
fixed-voltage IC voltage regulator was a
TO-92. The TI UA7805 was a surface-
mount power package used for voltage
regulators and transistors, but a TO-
220 would also work. Electrolytic capac-
itors can be radial or axial types. Of
course, you could make a PCB and use
all surface-mount components to shrink
the circuit size.

The digital dip meter features an
Atmel ATmega8535 microcontroller,
which is readily available, inexpensive,
and has an on-chip ADC for the meter
function. It also has a counter with an
external count input, which is essential
for frequency counting. Aside from the
requirement for an external count
input, almost any microcontroller can
be used (although some would obvious-
ly need an external ADC). The proto-
type’s microcontroller was in a plastic
leaded chip carrier (PLCC) package so it
could be easily socketed.

The display is an 8 x 2 LCD. The top

CIRCUIT CELLAR® < circuitcellar.com

Petail B Commotivg

L ’77ave€ Healtheare
gvun v

'Bm\:iu Enerm I\dearl:s ' Edveation |

; T W g
\. u@mmrrc

l"!
\

" “ &é ’ ’Buam r

|
| l |'|
| i |
However il - wireless
Presented by CT -r' nobile movement
since its inception CTI Wcasmg the leaders
| ‘

THE Mobile Marketplace

May 21-23,2013
Sands Expo & Convention Center Las Vegas, NV

CTIA2013.com

Prepare for tomorrow. Get smarter. Think big.

—
~
o~
(]
>
9]
wn
—
I
™
—
o
o~
>
c
©
=
.
e
(0]
[

a)

L2
IND-AIR

Q1
MPF102
Oscillator

Buffered RF

b)

+5 from CPU

R8
330
R7
27k D2

Qs
2N3904
RF BufferAmp

* — 3
o = 157 Freq
Js L—=10|Freq
o 10 |+5
O | Gnd
RF O ion drive
10 | Gate signal

+5 from CPU

R10
680k

da R18 Q4

2N3904
Neg voltage
translator

7\

680k

1
o 2
Gate Current

Figure 4—These are the schematics for the digital dip meter’s oscillator board (a) and buffer board (b).

line displays the frequency (four digits) and the bottom line
shows the analog gate current (really the voltage) amplitude.
The analog meter function uses custom characters pro-
grammed into the LCD memory to simulate an analog display.
Using this technique, an eight-character LCD can display up
to 40 analog values. I described this technique in my article
“Analog Bar Graph Display” (Circuit Cellar 183, 2005).

On the oscillator board, transistor Q1 is the oscillator, which
is the same as in the analog design. Q2 buffers the RF signal so
the digital front end doesn't load the oscillator signal.

On the buffer board, Q1 is a negative voltage translator. The
voltage at the oscillator transistor’s gate is negative so it has to
be translated to a positive voltage for the microcontroller ADC.
Q2 buffers and normalizes the RF signal. Note that diode D2 on
the buffer board is a Schottky diode. This is important to keep
Q3 from saturating. Without D2, or if D2 is a normal silicon
diode, Q3 will saturate and the operating frequency will be
severely limited.

The buffered RF signal from the buffer board connects to
U2 on the processor board. U2 is an NXP Semiconductors
74HC393 CMOS device that is wired to divide the incoming
frequency by 32. This enables operation to about 100 MHz.
The divider is needed because the microcontroller can only
accept a frequency input up to about 3.75 MHz.

The microcontroller accepts the divided frequency output
into one of its counter inputs and counts the frequency by
periodically capturing and sampling the count. I chose the
15-MHz crystal to make the math easy when converting
counts to megahertz.

The buffered, level-shifted voltage at the oscillator gate
drives the analog input on ADCO. The gate voltage’s negative
value must be translated and scaled to match the microcon-
troller ADC’s analog input range. The scaling circuit is fairly
simple because the display is viewed by the user, so precise

scaling is not needed. Some analog circuit conversions
require more complicated level shifting and scaling circuits to
bring an analog signal into an acceptable range.

Switch S2 is read by the microcontroller and used to adjust
the analog meter’s sensitivity so dips can be more easily seen
when the gate voltage’s value is low. Because the oscillator
gate goes less negative when it is in resonance with an exter-
nal circuit, the “dip” is actually a “peak” in this circuit (i.e.,
the meter voltage jumps up, not down, when resonance with
an external circuit is reached).

The software senses S2’'s value (high or low) and either
divides the ADC output by 2 or by 4 before displaying the ana-
log value on the LCD. The ADC is configured to use the micro-
controller’s internal 2.5-V reference.

Switch S1 provides an audio modulation output to the oscil-
lator via the gate circuit when closed. The modulation signal
is generated on the asynchronous serial output pin by the
microcontroller. The microcontroller continuously sends a
fixed-serial byte to the asynchronous serial transmitter to
generate a fixed tone. This enables the dip meter to be used
as a modulated signal source for checking receivers.

Coils are connected to the circuit using a pair of sockets from
a pin-and-socket connector, soldered to the oscillator board,
and passed through two holes drilled in the case. Banana jacks
or pin jacks can also be used.

The prototype’s coils are simply off-the-shelf inductors
mounted on perfboards for strength. Ordinarily, they would
be covered with heatshrink tubing. I left them uncovered so
the construction would be obvious. You could also hand-wind
coils using wood dowels or plastic forms as cores.

The tuning capacitor is not critical. It needs to be a two-
section variable capacitor with a shaft on which a knob can
be attached. This type of capacitor is not as common as it
once was, but you can still find them on the Internet. I used

CIRCUIT CELLAR® * circuitcellar.com

an air-variable capacitor. You could also
use the type of poly capacitors that
come from a transistor radio. The
schematic shows the capacitor with
two identical 100-pF sections. You could
also use capacitors with two 270-pF
sections or other values. The two sec-
tions do not need to be identical val-
ues; 135- and 100-pF sections would
work. You could go down to something
such as 50-pF per section, but you
would need more coils to cover the
same frequency range. The circuit runs
from an external “wall wart,” 9-VDC,
300-mA power supply.

TESTING THE CIRCUIT

The circuit is fairly easy to test. You
simply plug in a coil, apply power, and
verify that the oscillator frequency is
displayed and the analog value is show-
ing on the display’s bottom line. As you
tune across the frequency band, the
analog voltage will vary.

You can test the dip functionality by
connecting an inductor and capacitor
in parallel and checking for a dip.
Photo 1 shows an old choke from my
junkbox in parallel with a ceramic
capacitor. When you tune through their

factor. Or, you could use a poten-
tiometer to vary the analog voltage to
the microcontroller ADC input and no
software scaling would be needed.
You could replace R5 on the oscillator
board with a 300- or 500-Q poten-
tiometer.

A 16-character LCD would enable
better resolution of the analog “meter”

value by enabling 80 discrete analog
voltages to be displayed instead of 40.
But that would come at the expense of
a larger case.

This project demonstrated some inter-
esting design considerations. It also
showed the advantages of converting an
analog circuit like this to digital monitor-
ing and control. &

Stuart Ball is a registered professional engineer with a BSEE and an MBA. He has
more than 30 years of experience in electronics design. He is currently a principal

engineer at Seagate Technologies.

RESOURCE

S. Ball, “"Analog Bar Graph Display,” Circuit Cellar 183, 2005.

SOURCES
ATmega8535 Microcontroller
Atmel Corp. | www.atmel.com

74HC393 CMOS Device
NXP Semiconductors | www.nxp.com

UA78L05 and TI UA7805 Fixed-voltage IC voltage regulators

Texas Instruments, Inc. | www.ti.com

resonant frequency, there will be a—

small jump in the analog reading.

You can also check the circuit by
connecting a crystal’s leads with a two-
turn link of wire then placing the wire
link near the dip meter coil. However,
crystals have very sharp tuning, so you
must tune very slowly to see the peak.
Once you tune the circuit to resonance,
you can see how much the resonant
circuit pulls the oscillator frequency by
moving the dip meter away from the
resonant circuit and watching the fre-
quency change.

GOING FURTHER

You can improve the circuit. You can
replace U2 with a front-end counter.
This would enable the circuit to oper-
ate at the oscillator’s full range.

You could replace switch S1 with a
potentiometer connected to analog
input ADC1 so the sensitivity is con-
tinuously variable, as on the analog
dip meter. The potentiometer would
just provide a varying voltage to the
microcontroller that would be used to

mbed

mbed NXP LPC11U24 Microcontroller

Rapid prototyping for USB Devices, Battery Powered designs and ~-

32-bit ARM® Cortex™-MO0 applications

http://mbed.org =

determine the analog signal’s scaling

circuitcellar.com < CIRCUIT CELLAR®

Fgbruary 2013 - Issue 271

N
ul

—
~
o~
(]
>
9]
wn
—
I
™
—
o
o~
>
c
©
=
.
e
(0]
[

7

§ARTI<ZLE

b

by William Myers and Guo Jie Chin (USA)

3-D Paint

A Complete Hardware and Software Package

3-D Paint is a complete hardware and software package that uses free space as a
canvas and enables you to draw in 3-D by measuring ultrasonic delays. A standard PC
running MATLAB captures your movements and returns them in real time.

ith the goal of designing an exciting system for

a design course at Cornell University, we built
a 3-D paint program comprising hardware, a microcontroller,
and a PC running MathWorks’s MATLAB computing environ-
ment. All three modules must interact to enable an artist to
wave a pen in the air and see his movements translated in
real-time to various projections on the PC (see Photo 1). We
wanted to design something that relied on many aspects of
our education, including: physics, mathematics, A/D circuits,
signal processing, microcontroller programming, peripheral
communication, and high-level coding. In this article we'll
explain the design’s hardware and software and their imple-
mentation details. We'll also discuss design tradeoffs and
engineering challenges we encountered in the project’s
development.

HIGH-LEVEL OVERVIEW

The design’s foundation relies on the fact that the speed of
sound is constant in a given medium. Under everyday
conditions, the speed of sound in air is

stand design and receiver positioning.
To map the three displacement measurements to trilaterated
X, Y, z coordinates, we derived the following relationships:

& &+l
2

I T
YTy

x:%(,ldf -y - 22)

With this physical and mathematical means of determining
3-D coordinates, we turned our attention toward the actual
infrastructure that would enable the capturing and computa-
tion of sound delays.

The microcontroller's primary function was to facilitate the
rapid acquisition of time delays between the transmitter and the
three receivers. We tasked this job to a microcontroller because
of its inherent ability to interface with analog hardware and
communicate with higher-level machines (e.g., PCs).

340.29 mps. This means there is a one-to-
one mapping between time and distance for
sound propagation. By constructing a pen
equipped with an ultrasonic transmitter and a
stand with ultrasonic receivers, we could cal-
culate their separating displacement by emit-
ting a sound pulse from the pen and record-
ing the time delay until it was received by the
stand. Using three uniquely positioned
receivers on the stand and collecting three
distinct displacements, we could stipulate the
position of the artist's pen relative to the
stand in 3-D space. Figure 1 shows our
resulting coordinate system, including the

Photo 1—The 3-D paint program includes hardware, a microcontroller, and a PC running
MATLAB. a—Here is the interface from the artist’s point of view. b=—This is the 3-D Paint
project’s MATLAB GUI.

CIRCUIT CELLAR® * circuitcellar.com

Figure 1—This is the mathematical coordinate system for trilateration and
stand/receiver design.

The hardware was broken up into two components: emission
and detection. On the emission side, we needed hardware that
would provide a sufficiently strong signal to drive our ultrasonic
transmitters. On the detection side, we needed appropriate
hardware amplifiers that could take the small signal from a
receiver and trigger the microcontroller when a sound pulse was
detected.

MATLAB was where the bulk of the artist interaction was cen-
tralized. It was used to produce a fully functional GUI so the
artist could change various parameters about the paintbrush
(e.g., color, etc.) and receive visual feedback as to what was
being drawn. Furthermore, MATLAB also needed to interpret the
pen position in a “camera” mode in addition to a “paint” mode,
which would enable the pen to function as a camera to view the
drawing. Figure 2 shows a high-level diagram of the complete
system.

HARDWARE

When designing the receiver stand, we mounted all three
receivers in one plane facing the design space so the pen could
always be simultaneously oriented toward each receiver. Com-
bined with a careful selection of wide-directionality ultrasonic
Rx/Tx pairs, this enabled us to trigger all receivers with a single
transmission pulse from the
pen. Positioning the receivers
47 cm from the stand origin
produced a happy medium
that was wide enough for good
sensitivity, = yet compact
enough that Rx/Tx directional-
ity was not a concern.

We constructed the pen from
an emergency whistle (see
Photo 2). We drilled a hole on
top of the whistle to mount a
single-pole, single-throw push
button (to signal when the

Photo 2—The pen, which features
a mounted push button, was made
from an emergency whistle.

circuitcellar.com * CIRCUIT CELLAR®

Microcontroller PC

)))) o[car

Rx3 Gain

uUsB

MOSFET
driver

Monitor

Figure 2—The complete system includes a microcontroller, a PC, a monitor,
a MOSFET driver, a pen, and a button.

artist wanted to draw). We drilled another hole on the front to
mount the ultrasonic transmitter.

We bought two Jameco ultrasonic Rx/Tx pairs and planned to
use one of the transmitters as a receiver. The Rx/Tx pairs were
sharply resonant at 40 kHz. This was well suited for use with
our Atmel ATmega644 microcontroller, which could easily gen-
erate the necessary signal to drive the pairs. The pairs had a
-6-dB point for a 60° beam angle, which was sufficiently spread
for the project.

We needed to drive the ultrasonic transmitter with a power-
ful signal to produce the strongest response possible on the
receive side. We used a Microchip Technology TC4428 MOSFET
driver, which provided a simple and effective design. We used a
single driver chip with both inverting and noninverting internal
drivers because we were generating a square wave and
because the microcontroller’s 40-kHz output (0-5 V) was per-
fectly suited for logic lows and highs. The noninverting driver
would output V. if it saw a voltage greater than 0.8 V on the
input and ground otherwise. The inverting driver swapped this
mapping. Setting V. to 9 V (so the device could be operated
using a 9-V battery) and running our 40-kHz output from the
ATmegab44 to both the inverting and noninverting inputs, we
could generate an 18-V swing from a single-power source.

On the receive side, we found the Texas Instruments INA129
instrumentation amplifier was ideal due to its larger operating
voltage (£18 V), fast slew rate (4 V/us), high single-stage gain
(10,000), and high common-mode rejection ratio (CMRR),
which was especially important given that the receive and
transmit circuitry was co-located.

Each inamp’s output was wired up to a respective pin on the
microcontroller. This gain gave our received signal a peak-to-
peak swing of approxi-
mately 6 V, which was
ideal for triggering exter-
nal interrupts on the
ATmegab44. Photo 3
shows our final soldered
implementation of the
analog circuitry.

SOFTWARE

We implemented the
software across two plat-
forms: the ATmega644
and MATLAB. The code for
the microcontroller oper-
ated within a while(1)

Photo 3—This is the soldered Rx/Tx circuit
implementation.

February 2013 - Issue 271

—
~
o~
(]
3
[0
wn
—
I
™
~—
o
~N
>
c
©
>
s
Kea)
()]
(18

loop after some basic initialization proce-
dures. Initialization procedures included
setting up UART communication (we
used 38,400 bps to speed up communi-
cation), configuring I/O pins, initializing
timers, setting up interrupts, and initial-
izing variables.

The code required us to use all three
ATmegab44 timers. We used Timer0 to
establish a 0.5-ms time base from which
we could dispatch various actions.
Timerl was used as a means to calculate
the delay in the cycles needed for a pulse
to be detected. Because we wanted to
time as accurately as possible, Timerl
was counting at the microcontroller’s full
clock speed (16 MHz). We utilized Timer2
to generate the 40-kHz square wave
required by the ultrasonic Tx/Rx pair.

We wrote five interrupts for the code
operation. The first was the Timerl over-
flow interrupt. This interrupt was trig-
gered every time Timerl (an 8-bit count-
er) overflowed. Because 8 bits was not
nearly enough space to represent a typi-
cal delay time in cycles (they were gen-
erally about 10,000 cycles), we had the
overflow interrupt increment a variable
by 256 every function call so we could
track the true cycle count. The second
interrupt ran whenever we received a
new character on the serial port. We used
this to tell the program MATLAB had sent
a command and the ATmega644 would
need to respond. The other three inter-
rupts were hardware interrupts on intg,
intl, and int2. Each ultrasonic Rx was
wired up to a given pin after gain, so the
interrupt would fire when the pulse was
received.

The while(1) loop first updated the
pen button’s state, which was fully
debounced, every 20 ms. Next, the code
checked whether or not it was time to
emit a new pulse. We set the inter-pulse
period to 20 ms to ensure any reflections
from previous pulses would have plenty
of time to die out before we began a new
measurement. We also only emitted a
pulse for 0.5 ms. This was all that was
necessary to properly trigger the
receivers, and limiting the pulse length
helped keep the environment quiet for
each pulse. The loop also checked for a
potential timeout. If all three receivers
had not been triggered within 7.5 ms, the
system would reinitialize everything,
throw out the bad data, and emit another

pulse. This guaranteed that any captured
data came from one unique pulse.

The loop also checked whether or not
all three receivers had triggered. If they
had, it entered them into the signal-pro-
cessing buffer. We converged on a two-
stage processing scheme for this project
comprising a sliding window median filter
and a sliding window mean filter. The
median filter was a crucial first step
because there could be very large out-
liers compared to the true delay, and a
simple averager would have enabled
these outliers to have a drastic effect on
processed data. To implement the filter,
we created an index to an array that
would cyclically drop samples into the
buffer. This made it so we didn’t need to
move any values around in the array
when a new sample came in. Next, we
needed to sort the data, which was
accomplished via the C standard library
function gsort. Because we needed to
maintain the buffer order for proper win-
dowing, we had to copy the data to a
temporary array, sort it, then extract the
median by simply looking at the middle
array index. We found a median length of
five produced excellent stability and
responsiveness.

Next, the median filter outputs were
fed into a sliding-window averager. The
mean filter cyclically buffered new values
in exactly the same fashion as the medi-
an filter. Whenever a new sample
arrived, the code would sum the array
values and divide out by the array
length. This final value was what was
then sent up to MATLAB in the UART data
packet. We found a mean length of 10
again produced excellent stability and
responsiveness.

The last thing the loop checked for
was whether or not MATLAB had sent a
flag indicating that it was ready for a
new sample. The protocol we imple-
mented dictated that MATLAB would
send “y" if it was prepared for a new
packet. This is the way MATLAB is best
suited to receive data. Simply pouring
packets onto the UART was neither
appropriate nor reliable.

We used the stock GUIDE GUI devel-
opment environment to create a GUI in
MATLAB. It enabled us to graphically
draw out where we wanted each compo-
nent and then write backend code to
support it.

The GUI drew the X, y, z coordinate
data in six separate ways. “3-D Space”
showed a 3-D projection of the data
(here the “camera” mode would enable
the user to use the pen to control the
drawing’s viewing angle). “Stereoscopic”
showed two plots (one for the left eye
and one for the right eye) slightly offset
in azimuth so a human could cross his
eyes and see the drawing pop out (simi-
lar to a Magic Eye stereogram).
“Anaglyph” showed two overlaid projec-
tions of the drawing in red and blue for
use with 3-D glasses. Lastly, “"Orthogonal
Projections” showed three 2-D projec-
tions of the drawing. Additionally, the
MATLAB GUI enabled the artist to select
the brush color, size, type, pen mode,
background color, and display mode.

MATLAB initialized by setting up the
serial object to talk with the ATmega644,
creating various global variables that are
passed around the GUI (e.g., brush
color), and configuring various particulars
about the GUI (e.g., plot color and axis
size). It also created an important timer
object. We set up how often we wanted it
to execute (every 50 ms in our case)
among other parameters and pro-
grammed a callback function. The vast
majority of our code resided within this
timer callback function.

The callback first sent a “y” to the
ATmegab44 to let it know it wanted data.
Then it waited to receive the data. When
we received the packet, we unpackeded
it by assigning the three delays and a
button state to variables used within
MATLAB.

When we read in the cycle delays, we
subtracted a constant number of delays
to make up for the INA129’s rise time.
MATLAB would next process the data
from cycle delays into distance in
meters. If the program was in Paint
mode, it would buffer the distance into a
buffer specifically for Paint mode.
Because MATLAB pulled values from the
ATmegab44 at a rate not equal to the
rate they were produced on the micro-
controller, breaks in the data were rein-
troduced. To mitigate this, we introduced
a small sliding window mean filter exact-
ly like the one on the ATmega644. In the
case of Paint mode, we used a three-
length window so it wouldnt detract
from responsiveness. Next, we used the
prior equations to trilaterate the filter

CIRCUIT CELLAR® < circuitcellar.com

APzC 2013

March 172215 2013

Long Beach Convention Center

Long Beach, CA

THE PREMIER
GLOBAL EVENT
IN POWER

ELECTRONICS™
Visit the APEC 2013

web site for the latest

information!

www.apec-conf.org

SPONSORED BY

’ x b =y

—
~
o~
(]
>
9]
wn
—
I
™
—
o
o~
>
c
©
=
.
e
(0]
[

Sample Number

0
0L
0
0
0
0
o
0L
—02
06
= 00}

Distance (m)

0

Figure 3—This plot shows the single-receiver accuracy.

delays into x, y, z coordinates, which produced a linear inter-
polation between a point and its predecessor.

One of the MATLAB program'’s critical features was to display
the current pen position cursor on all the plots. Otherwise, the
artist wouldn't know where the pen was relative to the rest of
the drawing before making a new stroke. Thus, at this point in
the timer function execution MATLAB updated all the cursor val-
ues. Next, if the button associated with a given packet was
pressed, all the plots were updated with the new data point.

If the program was instead in Camera mode, then the
incoming distance measurements were placed in a separate
mean-filtering buffer. The reason for separate buffers was that
the Camera mode could afford a bit more delay but had to be
much more stable compared to the Draw mode. In Camera
mode, the x, y, z coordinates were simply used to specify the
camera’s location. (The camera always points at the central
point in the design space.)

Each of the GUI's toggle buttons and drop-down menus had
a corresponding callback function. In each callback function, the
appropriate global variable was set by whatever the artist
selected for use elsewhere in the program.

The biggest upside to using MATLAB was the extensive infra-
structure it already contained for producing output (e.g., 3-D
plots, exporting images, rotating plots, etc.). The biggest down-
side was that this same extensive overhead was not designed
for fast real-time use. It didn't run quite as efficiently as we had
liked, and further iterations of this design would likely include
rebuilding the PC program in a more flexible language for real-
time applications.

OPERATION & IMPROVEMENTS

The device operated well within a rea-

Varying X Varying Y Varying Z

Figure 4=These x, y, and z variations show the orthogonal coordinate
isolation achieved.

The hallmark test for proper functionality was watching how
our trilateration equations interpreted pen movements in real
time. Initially, we faced a large amount of coupling between
the x, y, and z coordinates, with each coordinate unexpected-
ly following when another was varied. We corrected for this by
manually calibrating the aforementioned slew offset.

Figure 4 shows the isolation quality we managed to achieve.
For each panel, the pen was displaced in a different orthogonal
direction and, as expected, only one coordinate sinusoidally
moved with the pen input in each.

3-D Paint is currently able to execute with a 0.5-s time lag
between the artist moving the pen and the stroke being por-
trayed in the MATLAB GUI. The main bottleneck occurs in the
MATLAB code, as MATLAB is not well suited for real-time oper-
ation. Fortunately, shifting some of the signal processing onto
the ATmega644 helped to incrementally improve the speed.

We were satisfied with how our implementation turned
out. During final testing and calibration, we felt that the
system worked well enough to expose our poor artistic
skills, which represented the true bottleneck in terms of the
quality of images produced. Using supports to direct the
pen, we found that highly accurate information was cap-
tured and displayed by the system. Furthermore, the entire
design was only $47.24.

To improve our current design, we would like to implement
the oscillator on the pen instead of having it be driven from
the microcontroller unit. This, together with Bluetooth com-
munication, would enable us to make the device completely
wireless, thus enhancing artist freedom and mobility. Finally,
we would not use MATLAB to process information and would

instead generate a graphical artist inter-

sonable design space. We limited the axes
length (and thus implied operational
range) to roughly 1 m. Within this region,
our raw data was fairly accurate, so, post
filtering, we saw good results. Figure 3
shows the pen held at a constant distance
from a single receiver. The raw data points
are plotted along with a filtered curve.
For this test, we held the pen 17.42 cm
from the transmitter. MATLAB reported a
17.45-cm mean-filtered distance, which
was an acceptable error for our purposes.

face in a more flexible language. MATLAB
does not work well for real-time opera-
tion. This resulted in a noticeable time
lag in our current device’s operation.

We would like to see what a genuine
artist could do with this type of device.
We say this not only because we are
interested in seeing how finely the sys-
tem can interpret someone with artistic
mastery, but also because we are curious
as to how someone could exploit a 3-D
canvas to create new kinds of drawings,

As witnessed from the plot, the data devi-

ated very little from this average. this type of drawing.

Figure 5—You can use the 3-D device to create

hopefully much more sophisticated than
the example shown in Figure 5. &

CIRCUIT CELLAR® * circuitcellar.com

William Myers (wgm37@cornell.edu) graduated summa cum
laude from Cornell University’s ECE program in May 2012. He
is a Financial Software Developer at Bloomberg in NYC. In true
ECE spirit, he has reveled in the medley of topics the major
embodied by indulging in everything from lasers to MEMS and
Assembly to jQuery. When he is not sinking his teeth into a
Tolstoy novel or reading an esoteric typography blog, you
could find him running along the East River or rock climbing in
a converted Brooklyn newspaper warehouse.

Guo Jie Chin (chinguojie@gmail.com) is a senior majoring in
ECE and Economics at Cornell University. Having interned at a
couple of banks, he will probably be working at one next year.
He dreams of one day bringing the benefits of finance and
technology to the developing world. In his free time, he enjoys
sleeping, drawing, watching movies, and jogging through the
wilderness in upstate New York.

PROJECT FILES

To download the code, go to ftp://ftp.circuitcellar.com/
pub/Circuit_Cellar/2013/271.

RESOURCES
Craig’s Area, “Atmel Ultrasonic Ranger,” http://craigs
area.com.

K. Gluck and D. DeTomaso, “Ultramouse3D,” ECE 4760
Designing with Microcontrollers Final Projects, Cornell

THE ORIGINAL SINCE

CB-PNOL

Beta LAYOUT

i

FREE Stencil

Call Tyler: 1707 447 T744 || b =
sales@pcb-pool.us N
PCB-POOL® is a registered tfac:jémark of

www.pcb-pool.com

Bela

LAYOUT

circuitcellar.com * CIRCUIT CELLAR®

University School of Electrical and Computer Engineer-
ing, ECE 4760 Designing with Microcontrollers Final
Projects, http://people.ece.cornell.edu/land/courses/
ece4760/FinalProjects/s2009/kwg8_dmd54/kwg8_dmd
54/index.html.

B. Land, “Using Graphics,” BioNB 441, Cornell University,
https://instructl.cit.cornell.edu/courses/bionb441/Graphics.

, “Debounce Demo,” Cornell University, http://people.
ece.cornell.edu/land/courses/ece4760/labs/s2012/lab2
code/debounceGCC644.c.

M. Lindner, “From 3-D Plot (Stereoscopy),” MATLAB Central,
File Exchange, MathWorks, Inc., www.mathworks.com/
matlabcentral/fileexchange/27283-3d-plot-stereoscopy/
content/stereo_plot.m.

SOURCES

ATmega644 Microcontroller
Atmel Corp. | www.atmel.com

MATLAB
MathWorks, Inc. | www.mathworks.com

TC4428 MOSFET Driver
Microchip Technology, Inc. | www.microchip.com

INA129 Instrumentation amplifier
Texas Instruments, Inc. | www.ti.com

CS328A-XS

100MHz Mixed
Signal Oscilloscope
+ Signal Generator

Capture 200 G Samples

Other scopes capture M Samples. Ours
captures days. Find intermittent problems.
Then zoom with usec precision.

siChon f | MiGan A | M2GrenA | 2wt |

14,0

12,0} T

]

10.0} [Drviiors - Chars A 2000V Chan B 2000
e

8.0

e

—z.u-l \ \ : I \ \ I !
0.0 100 200 30.0 400 500 6800 70.0 80
Time (s)

14 Bits 100 MSPS Ms0 |EEE]T:

www.cleverscope.com

February 2013 - Issue 271

[0))

1

—
~
o~
(]
>
9]
wn
—
I
™
—
o
o~
>
c
©
=
.
e
(0]
[

\LV
5

S

7

by Richard Lord (USA)

Digital Camera Controller (Part 3)

Build a Generic Front-Panel Board

The first parts of this article series introduced the microcontroller-based Photo-Pal
and described its hardware and construction as well as its code, user interface,
and timing. Many elements of the Photo-Pal’s design can be used to create a
generic front-panel board for use with numerous other applications.

his article series describes the Photo-Pal, which is a

microcontroller-based electronic flash-trigger camera
controller. The second part of this article series, “Digital Camera
Controller (Part 2): Code, User Interface, and Timing,” (Circuit
Cellar 268, 2012), described how an 8-bit microcontroller and a
two-line character display can be used to implement a versatile
user interface with software-defined push-button keys. As the
Photo-Pal camera controller design evolved, it became apparent
that this user-interface concept and associated hardware could
be applied to many other projects. In some applications, such
as Photo-Pal, this user-interface core would have enough avail-
able I/0 pins and leftover microprocessor power that the entire
project could be implemented with the addition of only a few
simple parts. For other projects, this implementation could
become a front-panel human interface that could communicate
with other microcontrollers and computers or with a busy DSP
that couldn’t handle the extra interface overhead.

With this more generic concept in mind, I decided to design a
PCB that would implement a fully functional user interface. My
goal was to simplify construction of future projects by limiting the
hand-wired portion to the components specific to that project.

I had used hand-wired boards mounted in a Hammond Manu-
facturing standard plastic case to build several battery-operated
devices, including the Photo-Pal.

I designed an "L shaped circuit board that wraps around the
bottom and right edges of the display so the four software-
defined push buttons are placed below the display’s bottom
edge with the “Increase” and “Decrease” push buttons at the
display’s right edge (see Photo la). The board also includes
three LEDs, the power switch, a 5-V regulator, a 16-pin applica-
tion connector for the power, and I/O connections to the appli-
cation board. It is designed to mount directly onto the mount-
ing bosses of the Hammond plastic case. Photo 1b shows the
board’s back side.

MICROPROCESSOR DECISIONS

When I built the original Photo-Pal controller, I reached into
the microcontroller drawer of my existing parts collection and
grabbed a Microchip Technology PIC16F873A CMOS flash-based
microcontroller. This microcontroller had the functionality I
needed, but it turned out the 4,096 instruction limit provided
barely enough code space. Microchip has now upgraded the
PIC16F87x family to the newer pin-compatible PIC16F88x fam-
ily, which offers lower power consumption and several new fea-
tures, including the ability to use an internal 8-MHz oscillator.
For the generic controller, it made more sense to use the
PIC16F886 part that has the same features as the PIC16F883

This pocket-size case includes a

battery compartment and is big
enough for a standard 2 x 16
character display and a surround-
ing circuit board. It is also deep
enough to hold a second board
with the application-specific hard-
ware. For several of my future
projects, it made sense to design
a generic controller circuit board
that would easily fit into this plas-

tic case along with the display. right edge.

Photo 1—The circuit board wraps around the display’s bottom and right edges. a=—Four push buttons are
located below the display’s bottom edge. The “Increase” and “Decrease” push buttons are at the display’s
b—This is the board’s back side.

CIRCUIT CELLAR® * circuitcellar.com

but has twice as much code space (8,192
instructions).

PIN CONFIGURATION

One of the difficulties I encountered was
determining which pins to commit to the
front-panel functionality and which pins
would be made available for the applica-
tion it would control. Each PIC16F886 I/O
port pin can be configured to provide addi-
tional dedicated functions (e.g., an analog
input or a serial data output). Various
applications might need to use one or
more of these special pin functions, so
hard wiring a pin to the display meant the
other specialized functions wouldnt be
available for the application’s use.

In the original Photo-Pal—which I
described in “Digital Camera Controller
(Part 1): Hardware and Construction”
(Circuit Cellar 267, 2012)—I chose the
microcontroller pins with the idea of
organizing the Photo-Pal signals into logi-
cal function groups that would simplify
programming. I didnt worry about other
potential functions a pin might be used for
in other applications. For the generic
front-panel design, the basic starting
design was derived from the schematic
that appeared as Figure 3 in Part 1 of this
series. Some pin assignments were
rearranged to make better availability of
the microcontroller’s special features. A
new application connector was added to
provide access to the application I/0 pins,
replacing the connection that had served
the switches and LEDs of the old two-
board version.

If there had been enough extra room
on the circuit board, each of the micro-
controller’s I/O pins could have gone
through a jumper before reaching their
destinations. This way, the wiring could
be rearranged to gain access to different
pin functions if needed for a particular
application. However, with a tight board
layout, this was not an option. For the
generic front-panel board to be useful, I
needed to carefully analyze what micro-
controller features would be lost for each
choice of an internally dedicated pin.

With the LCD configured to work using
a 4-bit data bus, nine microcontroller
pins are needed to implement the front
panel’s essential circuitry. These are the
four data lines (DB4-DB7) and three
control lines (E, R/W, and RS) of the LCD
and two lines (SW1:4-enable and

circuitcellar.com < CIRCUIT CELLAR®

SW5:6-enable) needed to read the six
front-panel push buttons. In addition,
there are three optional LEDs and an
optional analog input used to measure
the battery voltage. If all the options are
included, 13 of the microcontroller’s port
pins will be dedicated to the board’s own
hardware and are thus unavailable for
the user’s application. The question
becomes which of the pins to use for the
dedicated board hardware and which to
provide for the user application.

In the original Photo-Pal design, it
seemed logical to keep the four LCD data
lines (DB4-DB7) grouped together in
either the upper or the lower four pins of
the same port. I was using the compara-
tor inputs at RA2-RA3 for the trigger cir-
cuitry and RA6-RA7 were potentially
unavailable, so that ruled out Port-A. Five
pins in Port-C (RC3-RC7) were where the
USART, SPI, and I°C capabilities were
made available, so that port was elimi-
nated. In Port-B, pin RBO was dedicated
to providing a hardware-activated inter-
rupt that could be useful, so RB4-RB7
seemed like the only reasonable choice
for the LCD data lines.

My first attempt at a PCB followed the
original Photo-Pal design a little too
closely, using RC3 and RC4 as the low-
true enables for reading the push-button
switch banks. Unfortunately, I realized
that this prevented the use of the SPI and
I2C ports by a user application after I had
produced the first PCBs. This was a seri-
ous oversight, because many applica-
tions would make extensive use of these
interfaces. While there were a few proj-
ects where I could use these boards, they
didn’t meet the criteria for a more gener-
ic design. I needed a better way to help
me decide which pins to dedicate to the
on-board function.

PIN SELECTION

Table 1 is a worksheet I developed to
help me select which pins to use. The
upper part of the worksheet is a table of
the PIC16F886 microcontroller's 24 avail-
able I/O pins grouped into the three I/O
ports shown in the first column with the
functions provided at each pin shown in
the second column. The third column is to
be filled in with the tentative assignments
of the pins to the signals needed for the
dedicated on-board functions. In the
fourth column, the remaining pins are

then assigned to the application connector.
The earlier PIC16F87x family used pins
XTAL1 and XTAL2 for the crystal or ceram-
ic resonator that was needed to supply the
microcontroller’s operating clock. The
newer PIC6F88x family offers the option of
an internal 8-MHz oscillator, making one or
both of these pins potentially available as
port RA6 and RA7. However, for some
applications, a more stable clock source
may be desirable, so it is a good idea not
to assume that they are always going to
be used for I/0.

As this worksheet evolved, I also added
function tables to the bottom of the work-
sheet that list each of the categories of
special I/O functionality the PIC16F886
supports and which I/O pins are associat-
ed with various configurations of that fea-
ture. Note that the pin usage depends on
the particular configuration being sup-
ported. For example, if you want to use a
single analog comparator with an inter-
nally generated reference, then only RA3
(C1IN+) or RA2 (C2IN+) would be used
as an analog input and the other pins
would be available for other uses. Howev-
er, if you want access to all inputs and
outputs of both comparators, pins
RAO-RAS would all be dedicated to the
internal comparators’ operation and
unavailable for any other use in that con-
figuration. (Refer to the PIC16F88x fami-
ly datasheet for the details of each special
function and the I/0 pins used by the var-
ious configurations of each special func-
tion.) As the worksheet’'s upper table is
used to tentatively assign port pins to the
front panel’s dedicated hardware, shading
in the respective port pins as they appear
in the function tables at the worksheet’s
bottom helps reveal which microprocessor
functions are made unavailable to the
application as a consequence.

Using an early version of the pin-assign-
ment worksheet, I decided to move the
two push button read-enable outputs over
to RA4-RA5. I reasoned that RA6-RA7
might need to be used to support an
external clock source. It also seemed log-
ical to conclude that most common appli-
cations using the microcontroller’s com-
parators wouldn’t need external access to
the outputs via the Clout and C2out con-
figuration. The comparator outputs are
internally available to be read from a hard-
ware register and can be used to generate
an interrupt. If I needed the comparator

—
~
o~
(]
=
0]
)
—
I
™
~—
o
o~
>
c
©
=
.
Qo
(]
(g

February 2013 - Issue 271

RBO

Table 1—This is the front-panel controller board’s microcontroller pin-out worksheet.

outputs, I'd be better off using an external
comparator in the application hardware.
Using RA4 for the front-panel switches
also meant I couldnt externally clock
Timer TO, but I didn't see this as a major

AN12

PIC16F886 Microcontroller Generic Front-Panel Board Photo-Pal
Port Function Dedicated pins Application pins As an app to generic FP
RAO RAVANO/ULPWU/C12in0- d (User P2 - Pin 4) Vo
RA1 RA1/AN1/C12in1- User P2 - Pin 5 (not connected)
RA2 RA2/AN2V, . ICV, . IC2in+ UserP2-Pin6 TRIG_SWITCH
RA3 RA3/AN3N . [Clin+ User P2 - Pin 7 SOUND_TRIG
RA4 RA4/TOCKI/C1out (XXXX)
RA6 RA6/0SC2/CLKout (xtal2) (jumper option) (XTAL2)
RA7 RA7/0SC1/CLKIN (xtal1) (jumper option) (XTAL1)
RBO RBO/AN12/INT User P2-Pin 8 ARM_SW_in
RB1 RB1/AN10/P1C/C12in3- (jumper option) Trig-LED
RB2 RB2/AN8/P1B (jumper option) Shutter-LED
RB3 RB3/AN9/PGM/C12in2- User P2 - Pin 11) Flash-LED
RB4 RB4/AN11/P1D
RB5 RB5/AN13/-T1G
RB6 RB6/ICSPCLK
RB7 RB7/ICSPDAT
RCO RCO/T10SOIT1CKI (XXXX)
RC1 RC1/T10SI/CCP2IPWM2 (XXXX)
RC2 RC2/P1A/CCP1/PWM1 (XXXX)
RC3 RC3/SCK/SCL User P2 - Pin 12 MIC-PWR-out
RC4 RC4/SDI/SDA User P2 - Pin 13 SHUTTER-0-out
RC5 RC5/SDO User P2 - Pin 14 SHUTTER-1-out
RC6 RC6/Tx/CK User P2 - Pin 15 FLASH-0-out
RC7 RC7/Rx/DT User P2 - Pin 16 FLASH-1-out
Analog Comparator Timer 0 USART
RAO C12in0- i RC6 TX/CK
RA1 C12in1- RC7 RX/DT
RA2 CV.__/Cin+ Timer 1 N
RA3 Clin+ SPI

RC4 SoI
RB1 C12in3- RC5 SDo

I’c

RC3 SCL

PWM RC4 SDA

RA2 AN .. N
RA3 ANBN ..

Key

issue since TO was already being used to
provide the timing for the front-panel
code. The remaining pin, RA5, also can be
the “Slave Select” (-SS) input for the SPI
function, but I felt I could live without this

Available for user application

Optionally available

Dedicated to front panel

fairly unusual configuration.

One of the interesting things
about writing an article is that, to
explain the design to the reader,
you have to dig a bit deeper into
how you arrived at that way of
doing things. I put the LCD control
lines on Port-C because the LCD
data lines (RB4-RB7) serve as both
inputs and outputs to be able to
both read from and write to the
display. In my earlier experience
with the PIC16F87x family, after
much frustration I finally figured
out that the read-modify-write
instructions (e.g., bit-set and bit-
clear) didn’t always work well when
applied to I/O ports, where the
read was of the pins’ physical state,
not the data that was in the port’s
output latch. I learned the hard
way that the output latch was dis-
abled when the port pin was being
used for something other than an
output. Consequently, the bit
manipulation instructions were not
reading from what they would
write to. The evolving workaround
for this was first to move the con-
trol lines to Port-C and to later have
the bit-set or bit-clear instruction
modify a software “shadow regis-
ter,” which was then copied into the
port's output latch. However, the
earlier initial experience had made
me cautious about sharing the bi-
directional data lines with the LCD’s
control lines in the same port, so I
didn't consider whether the use of
a Port-B shadow register would
have enabled me to put the entire
LCD on Port-B.

My head-slapping moment came
from redrawing my pencil sketch of
the map for using I/0 pins. Filling in
the function tables beneath the port
assignment table in Table 1 while
writing this article, I suddenly real-
ized the legacy-based decision to
put the three LCD control signals
(E, R/W, and RS) on RCO-RC2 was
not as good a choice as I had pre-
viously thought. Looking more

closely at the function tables made me see
that the dedicated use of these pins would
completely prevent the use of the micro-
controller’s Capture-Compare feature and
would limit the usefulness of Timer T1

CIRCUIT CELLAR® < circuitcellar.com

E /SW5:6

1 0x04
|
ncrease

===

Swe
Value

Decrease

—==—0
Sws

defined Keys

L X80 L 0x40 L X0 L 0x10
—0 —o0 —o —o
sw1 swz sws sw4
3 1No14 1N914 1No14
Power Switch b1 D2 b3,
e
Power Supply
| ofwol <] i o
045V e el e Application Connector
&[SI P2
Yl dlay oo ficr
RC4 510 O —<BCE
RBS3 10 015 <BC3
Programming wpzso oo T o
Comnector chmpestion 1 5 B, eeien
P CE>— ool —<mz]
@ Q0000 oo <RA0
E
_l_i- Rs ||2 3[a[s O O+=——0+5V
cs I:| = LCD1
U2 o0 1k §§ =
0.1 VDD , il 18] Backiit-
= “MCLRAVPP (== dilely J —=-{ Backit+
= = PIC16F886 PGB/RB7 ber
- - PGC/RB6 DBS

o
]
A kp

o
v Vv v

DBs

= RAO/ANO
RA1/AN1
RA2/AN2

DB4
DB3
DB2
DB1
DBO

=] = [¥] (]

o |oo|=]RN

RAS RAG/ANG INT/RBO oo E<GEY
RA% RA4TOCKI T1OSO/RCO ST LT
RAS/AN4 T10SI/RC1 o

W-RA7 CCP1/RC2 [o—=

SCK/RC3 Rc3

Optional OSC1/CLKIN SDI/RC4 RC4

resonator SDO/RC5 = RC5

or crystal TX/RCS (== Zros

lll_ OSC2/CLKOUT RX/RC7 RC7

W-GND

W-RA8

optional

LCD
Contrast

T

[poo00000000000]®

+5V

vss

ol
[63084583846855448433

2x16 Character Display

Figure 1—A Microchip Technology PIC16F886 micro-
controller is at the PC board’s core. The microcon-
troller drives a 2 x 16 LCD via a 4-bit data interface

using the upper 4 bits of its Port B (RB4-RB7).

and the PWM output. If I instead had placed the control sig-
nals on RB1-RB3 and moved the optional LED outputs to
RCO-RC2, then I would have been able to make full use of the
features available on Port-C by selectively removing one or
more LEDs from the circuit board or by moving its current-lim-
iting resistor to connect it to another I/O pin. However, by the
time I realized this, I had already committed the design to a
second PC board using the schematic shown in Figure 1. The
design description and operation is essentially the same as
Figure 3 in Part 1 of this series. The significant difference is
the addition of connector P2, which supplies power and ground
and connections to 11 of the microcontroller pins to the user’s
application. An additional two pins of the application connec-
tor are connected to jumper pads that can be optionally con-
nected to RA6-RA7 or RB1-RB2.

A CONTRASTING DECISION

One of the annoyances of using an LCD is that the display’s
contrast is often not ideal. It can be set to a fixed value by
grounding the LCD's V,, pin through a fixed resistor, but the
contrast varies with the temperature and the viewing angle, so
the resistor value is selected to achieve a workable compro-
mise. Supplementing the fixed resistor with a potentiometer
can give you control of the contrast, but it isn't always easy to
provide this control on a compact device. While choosing I/0
pins for the PC board, it occurred to me that it should be possi-
ble to make use of the PWM feature built into the microcon-
troller to create a variable voltage output that could be applied
to the V. pin through a resistor divider. This option is available
by adding resistor R10 to the board.

circuitcellar.com * CIRCUIT CELLAR®

PCB LAYOUT

The front-panel board’s size and shape were dictated by the
available space in the plastic case I had selected and the need
to share that space with the display. I also wanted to use the
existing mounting bosses in the case. In looking at the board'’s
shape and the location of the four mounting holes, it became
clear that I would need to use surface-mount parts to have
enough room for the microcontroller. Through-hole push buttons
would have used up any area that could have been available for
the microcontroller, which also had to be surface mounted to
ensure there was room for the push buttons. Experience had
taught me that if T worked carefully, I could solder the 0.05"
pitch pins of the microcontroller’s SOIC-28 version. I could also
manage 0806-resistor size parts. I concluded that anything
much smaller was beyond my skill.

Next was the board layout issue. Now that I am retired, I
don't have access to expensive schematic capture and layout
tools at work. However, I had noticed one of the advertisers in
Circuit Cellar offers free downloads of schematic and layout
tools that can be used for two-layer boards. The “gotcha” is that
the tools produce proprietary output files that can only be used
to buy your PC boards from that company. However, for small
quantities of boards for trying out ideas, its board prices are
reasonable. If you come up with something really good you
later want to mass produce, you might have to do the layout all
over again to get competitive pricing.

I downloaded and installed the tools and found them surpris-
ingly intuitive, quick to learn, and easy to use. There’s no “auto-
matic routing” of the PC traces, but I go back to the days of using
red and blue tape and black component pads stuck to acetate

—
~
o~
(]
3
[
wn
—
I
™M
~—
o
o~
>
-
©
3
s
o
(0]
[

—
~
o~
(]
>
9]
wn
—
I
™
—
o
o~
>
c
©
=
.
e
(0]
[

sheets to layout boards, so I'm willing to do some of the work
myself for relatively simple board layouts. Without too much dif-
ficulty, I created a board layout that would work for the generic
front panel. Since the L-shaped board would have left a big area
that would have been wasted, I filled the unused area with the
layout of another board for a different project, but that’s a tale
for another time. Suffice it to say, I didn't waste the space.

I received the three promised circuit boards a few days after
placing the order. After carefully sawing away the other “filler”
board and routing out the notches needed for the front-panel
board to fit into the plastic case, I soldered in the components,
downloaded the front-panel program, and was pleased to see
the board worked as intended.

MORE PROCESSING HORSEPOWER

The PIC16F886 I chose for the generic front panel is adequate
for most applications, but there are situations where it would be
nice to have more capability. The internal clock speed is 8 MHz
(though it can be externally clocked to 20 MHz) and the hardware
stack is only eight levels deep. Microchip offers another family of
8-bit microcontrollers (the PIC18x series) with a more complex
instruction set and a number of enhancements over the basic
PIC16x parts. These include a deeper return stack (31 levels ver-
sus eight), PUSH and POP instructions, table read and write
instructions that make it easier to handle look-up tables and text
strings, an 8 x 8 bit hardware multiply, a two-level interrupt
structure, and an additional 16-bit timer. The internal clock can
be phase locked to 32 MHz providing four times the performance
of the PIC16F886. For those who only program in higher-level
languages, the larger stack and more flexible instruction set
make the PIC18x family more suitable for C-programming.

Fortunately, there are several parts in the PIC18F2x family
that have the same pin configuration as the PIC16F886 and can
replace it on the front-panel board without any hardware mod-
ifications. The high-end of the pin-compatible parts is the
PIC18F2523, which has 16,384 instructions of code space,
1,536 bytes of RAM, and a 12-bit ADC. It is only a couple of dol-
lars more than the PIC16F886, so one might ask why bother
with the less capable part in the first place? The simplest answer
is legacy. If you already have a lot of PIC16x code to draw from,
you might want to stay with what you have been using. How-
ever, it is nice to know the generic board can be upgraded to a
much more powerful part.

CO-PROCESSING

Perhaps, even the PIC18F2523’s availability on the generic
front-panel board still isn’t sufficient to meet your needs. Maybe
you need 30 I/0 pins instead of 10, or perhaps your application
calls for a blazingly fast DSP. The generic front-panel board can
easily communicate with another microcontroller by using
either the microcontroller’s TX and RX pins on RC6-RC7 with
the internal USART function or by using the I2C function on pins
RC3-RC5. Microcontrollers and DSPs have become so inexpen-
sive that it is easy to add a coprocessor to the application board
for very little extra cost. A 40-pin microcontroller can provide a
lot of additional I/O and a DSP can do a lot of signal processing
without being burdened by the user interface task that is being
handled by the front-panel controller.

USING THE GENERIC FRONT-PANEL BOARD

The generic front-panel board has been designed to provide
a simple, easy-to-use human interface with software-defined
keys and a microcontroller that can also implement the user’s
code for many applications. With a dozen I/O pins that can also
be used for up to eight analog inputs to the internal ADC, access
to two fast analog comparators, two PWM outputs, and a SPI
port available on the application connector, the front-panel
board can provide most of the functionally needed for many
applications with very little additional hardware. The on-board
USART can be used with parts such as the Microchip MCP2200
USB-to-UART serial converter to provide USB connectivity. With
the addition of an RS-232 or RS-485 interface, the board can
become the remote interface for any device with which it can
communicate. When even more functionality is needed, the
USART and I°C ports can be used to communicate with a
coprocessor. By removing the voltage regulator, the board can
be powered through the application connector from the USB
port or through the connection from a host computer.

LEARNING THROUGH DESIGN

This series of articles has shown how a design for a specific
application can lead to a better understanding of a how to use
a simple 8-bit microcontroller to implement a powerful user
interface by incorporating software-defined push buttons with a
simple character display, as described in Part 2 of the series.
That has led to the design of a generic front-panel board that
can be used for many other applications. Along the way, I
learned how to implement simple timers, auto-repeat keys, and
a parameter entry method that easily handles both large and
small numbers. I explored the ins and outs of menu-driven
interfaces and came up with tools (e.g., the worksheet) to
assign functions to I/O pins. Hopefully, you've been inspired to
apply some of these ideas to your own projects. In the process,
I've learned a lot, not only by designing and building both
Photo-Pal and the generic front-panel controller, but also by dig-
ging deeper into my thought processes to write about them. [&

Richard Lord (rhlord@comcast.net) holds a BS in Electrical Engi-
neering and an MS in Biomedical Engineering. During his career,
he has designed digital electronics for an aerospace company
and several telecommunication test equipment manufacturers.
Working as a consultant in the 1980s, Richard designed several
medical pulmonary test instruments and the electronics for an
autonomous underwater robot.

RESOURCES

R. Lord, “Digital Camera Controller (Part 1): Hardware
and Construction,” Circuit Cellar 267, 2012.

, “Digital Camera Controller (Part 2): Code, User
Interface, and Timing,” Circuit Cellar 268, 2012.

SOURCES

PIC16F873A, PIC18F2523, PIC16F87x, PIC16F88Xx,
PIC16F886, and PIC18x Microcontrollers and
MCP2200 USB-to-UART serial converter

Microchip Technology, Inc. | www.microchip.com

CIRCUIT CELLAR® * circuitcellar.com

MBEDDLED IN THIN SLICES

by Bob Japenga (USA)

Concurrency in Embedded
Systems (Part 5)

Designing Robust Systems with Linux

This is the fifth in @ multi-part article series examining concurrency in
embedded systems. This article discusses some other ways embedded
Linux helps you design robust systems with concurrency.

art 4 of this article series discussed Linux

threads and processes. This article will focus
on the first forms of inter-process communication
(IPC): mutexs, semaphores, and shared memory.
As [mentioned in my last article, remember, we are
taking this in thin slices. The goal of this article
series is to introduce you to the range of tools avail-
able in Linux to assist you in designing robust
embedded systems with Linux. In my last article, I
mentioned Michael Kerrisk’'s The Linux Program-
ming Interface. This month, I want to connect you
to the portable operating system interface (POSIX)
standard webpage to find more about all types of
IPC. (See the sidebar for more information about
the POSIX standard for shared memory.)

SHARED MEMORY

In my last article, we looked at the memory model
Linux uses and how memory is not shared between
processes by design. Thus, one process cannot share
data with another without some system mechanism.
Linux provides three mechanisms for designating
certain memory as shared and enables you to access
that memory: the historical System V UNIX shared-
memory model, shared file mapping supported by
POSIX, and the POSIX shared-memory model. This
article will examine the two POSIX mechanisms.
Generally, we don't recommend using the legacy
interfaces when a POSIX interface is available.

Functionally, these two mechanisms are very sim-
ilar. Since POSIX uses the term “object” to refer to
a memory region that can be shared between
processes, for the purposes of this article, T will call
files created using shared file mapping “nonvolatile
shared-memory objects” and the standard shared-
memory objects “volatile shared-memory objects.”

circuitcellar.com < CIRCUIT CELLAR®

Let’s look at each of these two mechanisms.

VOLATILE VERSUS NONVOLATILE
SHARED-MEMORY OBJECTS

In simple terms, both methods enable different
processes to directly access shared memory without
system calls (i.e., fast). The nonvolatile mechanism
enables the memory to be “sticky” across power
outages. When power is lost, a volatile shared-
memory object’s contents are lost. The caveat with
nonvolatile objects for real-time embedded systems
designers is the question of when the nonvolatile
object’s data is committed to the underlying file.
The kernel will commit the data to file at its leisure.
As a designer, POSIX enables us to commit on
demand (using msync()), which is a mixed blessing.
It frees the designer to access nonvolatile memory
across processes but places the burden on the
designer to know when to commit the mapped

WHAT IS POSIX?

We haven't talked about the portable
operating system interface (POSIX) in this
column. Tt is worthy of an article all by itself,
but for now, suffice it to say that it defines
an operating system (0OS) application pro-
gramming interface (API) that provides a
standard interface for applications written
across multiple OSes. The POSIX standard
was formalized by the Institute of Electrical
and Electronics Engineers (IEEE) and is also
known as IEEE-STD 1003. Theoretically, you
could write a POSIX-compliant application
for Linux and switch to QNX or VxWorks with
no change to your code. Let me know if you
would like an article or two on POSIX.

February 2013 - Issue 271

W

7

3

February 2013 - Issue 271

-

memory to disk.

Unfortunately, the APIs for using these two mechanisms are
not identical. In my opinion, there should be a flag that makes a
shared-memory object nonvolatile so they can be interchange-
ably used by the designer. Very often, we design systems where
certain data’s nonvolatility requirements change over the prod-
uct’s life cycle. But these differences persist and we must work
around them.

CONFIGURING VOLATILE SHARED-
MEMORY OBJECTS

Shared-memory objects can be thought of as volatile files (or
files kept on a RAM drive) keeping with the Linux virtual memory

II L

// globals
sem_t semi;
unsigned long long counter; /* shared object */

isting 1—This is an example of semaphore code.

int main()
{
pthread_t counter_thread;
pthread_t reader_thread;
sem_init(&semi, 0, 1); // semaphore 1s “named” semi
// semi is Tlocal
//initialize semi to 1

pthread_create (&counter_thread,

NULL,
(void *) &incrementer,
NULL);
pthread_create (&reader_thread,
NULL,
(void *) &reader,
NULL);
while (1 = 1)
{
sleep (10);
'
}
void reader (void *)
{
while (1 = 1)

{
sem_wait(&semi); // decrement
// start of critical section
printf(“Current Counter = %11u\n”,counter);
// end of critical section
sem_post(&semi); // increment
sleep(1);
}
}
void incrementer (
{
while (1 = 1)
{

void *)

sem_wait(&semi); // decrement
// start of critical section
counter++;

// end of critical
sem_post(&semi);
nanosleep(100000);

section
// increment
// Sleep for 100 microseconds

paradigm. To configure a volatile shared-memory object, the
programmer must perform three steps. The first step is to cre-
ate a shared object much like you create a file. Open the object
by name using the mode and flags just like you open a file. The
object can have read-only or read-write access based on the
flags. The POSIX system call shm_open() is used to perform this
function. It returns a volatile shared-memory object handle.
The second step is to use ftruncate() to set the object’s size.
Just like a file, the size can be later expanded or contracted. The
final step is to use the mmap() system call to map all or part of
the object into the process’ virtual memory. Optionally, the file
handle can be closed after the mmap call.

CONFIGURING NONVOLATILE SHARED-
MEMORY OBJECTS

Similar steps are performed to create a nonvolatile shared-
memory object. In this case, you can use the standard open()
commands (instead of shm_open) to create a standard file.
Then, like a volatile object, you use the mmap() system call to
map all or part of the file's contents to a memory region. The
mmap call sets the file size. As with the volatile object, the file
can be closed at this point.

Once the objects are created using one of these two meth-
ods, both object types can be identically used by referencing
them as memory. The objects look like any other memory
object in the process’ virtual address space.

PROS & CONS OF USING SHARED-MEMORY
OBJECTS

Although shared memory is the fastest means of sharing
memory across processes, there is still measurable overhead.
As mentioned in my last article, we measured 50 ps per access
to a nonvolatile shared-memory object on one 600-MHz ARM9,
If you are going to have significant shared memory between
concurrent tasks, you would be better off doing this between
threads and eliminating the overhead.

Also, remember, just because the OS provides this feature, it
does not provide synchronized access to the shared region. You
must use something like a semaphore or mutex to guarantee
the data’s integrity in these shared regions.

SEMAPHORES

As with shared memory, Linux provides both System V sem-
aphores and POSIX semaphores. As before, we will examine
only POSIX semaphores.

POSIX defines two types of semaphores: named and
unnamed. Named semaphores are handled between processes
with a sem_open() system call. Unnamed semaphores share a
memory address. With processes, this can be accomplished
with a volatile shared-memory object. With threads, this can be
accomplished with a global variable. The methods of initializing
and destroying these two types differ, but everything else is
operationally the same.

HOW SEMAPHORES WORK
A semaphore is a simple integer that can be incremented and
decremented but can never fall below zero. The sem_post()

I function increments while the sem_wait () function decrements

CIRCUIT CELLAR® < circuitcellar.com

the semaphore. If the integer is greater than 0, the sem_wait
immediately returns. If the integer is 0, the task will wait and
relinquish control to the scheduler until the semaphore rises
above zero, then it will decrement the integer.

USING SEMAPHORES IN CONCURRENT
DESIGNS

Let’s look at a simple example using unnamed semaphores to
illustrate how you would use a semaphore to provide the nec-
essary synchronization with shared-memory objects (in this
case shared between threads).

Assume you have a 64-bit counter that is incremented by
one thread, read by another, and stored in nonvolatile shared
memory. Assume the underlying hardware only supports 32-bit
integer arithmetic. (Note: We are not building this robust, we
are not checking the sem_init or pthread_create returns to
keep the example simple.)

The Linux C code segment in Listing 1 shows how this works.
The main process creates two threads and a semaphore and
then goes to sleep. The counter thread increments a 64-bit
counter. Remember, since this is a nonatomic operation, with-
out the semaphore, it could be interrupted midstream and pro-
duce incoherent results in the reader thread. The reader thread
merely prints the counter value to the standard output device.

With the semaphore in place, the reader thread will always
print coherent data. If the reader attempts to print the counter
while the counter is being incremented, the semaphore will be
set to 0 and the reader thread will block at the sem_wait () until
the incrementer function has updated the counter.

Two other nice enhancements for the embedded designer are
the sem_trywait() and the sem_timedwait (), which do exact-
ly what you'd expect them to do. With the sem_timedwait, you
can protect your thread against an unruly thread without wait-
ing forever for the semaphore. You can use the sem_trywait()
to control the blocking.

MUTEXES

POSIX supports mutexes (which stands for mutual exclusivity),
which is another mechanism for providing synchronization for
concurrency. Like semaphores, mutexes can ensure atomic
access to any shared resource. Unlike semaphores, which can
have an integer number of values, a mutex, by default, is binary
in nature and can only be locked or unlocked. Let's see how you
create and use mutexes.

CREATING AND USING MUTEXES

A default-style mutex is simply made by creating a variable of
type pthread_mutex and initializing it with PTHREAD_MUTEX_
INITIALIZER, It can be as simple as:

pthread_mutex_t MyMutex = PTHREAD_MUTEX_INITIALIZER;

A mutex can then be locked (pthread_mutex_lock) and
unlocked (pthread_mutex_unlock) to achieve the necessary
synchronization. Hopefully, you can see that these could be
used in the previous code example by replacing the sem_wait
with the pthread_mutex_lock and the sem_post with the
pthread_mutex_unTock.

circuitcellar.com < CIRCUIT CELLAR®

Get a little pushy.

Sm@"l' enough for Mini-Sumo;
flexible enough to make it your own.

Put your Arduino or compatible controller
on the right tracks with the Zumo chassis and
Arduino shield! The Zumo is a small, tracked
robot platform that works with a variety of
micro metal gearmotors to allow for a custom-
izable combination of torque and speed. Add
a Zumo shield, which includes a dual motor
driver, buzzer, and three-axis accelerometer
and compass, to make an Arduino-controlled

robot that can really throw its weight around!

FiPololu

Robotics & Electronics

Learn more at www.pololu.com/zumo

February 2013 - Issue 271

W

9

—
~
o~
[}
>
[V
wn
—
I
™
—
(@]
o~
>
-
©
=
=
e
(0]
[

I Listing 2—When using a mutex, nested layers of critical code sections

are unnecessary.

HighLevelFunction()
{
// Do some work
// Enter Critical Section with Semaphore
//(sem_wait) or Mutex lock
AccessSharedResource();
// Do some work
LowLevelFunction();
// Exit Critical Section with Semaphore post
//(sem_post) or Mutex unlock
// Do some work
}

LowLevelFunction()

{
// Do some work
// Enter Critical Section with Semaphore
//(sem_wait) or Mutex lock
AccessSharedResource();
// Exit Critical Section with Semaphore post
//(sem_post) or Mutex unlock
// Do some work

WHERE MUTEXES WORK BETTER THAN
SEMAPHORES

There are at least two cases where mutexes work better than
semaphores. Many times, we create several functions in a con-
current design that access the same shared resources. With a
mutex, you need not worry about nested layers of critical sec-
tions of code. Listing 2 illustrates how this works.

With a semaphore, you would be locked out forever in the low-
level function when called by the high-level function. With the
mutex, you have options to easily solve this. Instead of using the
default behavior, POSIX has two other types of mutexes. For
PTHREAD_MUTEX_ERRORCHECK mutexes, the lock would fail and
you would know you need not unlock the mutex. For
PTHREAD_MUTEX_RECURSIVE mutexes, the lock maintains a
counter so you can enter a critical section a second time with no
problems (as in our low-level function). Unlocking merely decre-
ments the counter and doesn’t actually unlock the mutex.

The second advantage to using a mutex is that the mutex can
only be unlocked by the thread with which it was locked. A way to
remember this feature is not to think of lock and unlock but
owned and available. If it is owned (i.e., locked), only the owner
can make it available (i.e., unlocked). This feature helps create
a much more robust design because you are forced to think in
a more structured manner.

WHERE SEMAPHORES WORK BETTER THAN
MUTEXES

If you have a resource such as a finite number of open-file han-
dles and you want to gracefully handle times when you run out
of file handles (not just abort your program), semaphores do the
trick. These file handles are allocated and dynamically used for a
time when the file is open and released when closed. In this case,
a semaphore works better than a mutex. If you initialize the sem-
aphore to the number of open file handles when it is created, your

}]

thread can simply perform a sem_wait when it wants to obtain a
file handle. If there is at least one available, the code does not
block. If all of the open file handles are exhausted, the code will
block until one becomes available. This is much more robust than
aborting the program under this condition.

ALTERNATIVE OPTIONS

All locks and semaphores incur a resource penalty. However,
understanding these options is critical in designing embedded
systems with concurrency. If you are fortunate enough to be
using a toolchain that supports the latest C standard (C11) there
are a number of other concurrency controls built in. But that is
for another day, since we only take things in thin slices. &

Bob Japenga has been designing embedded systems since 1973. In
1988, along with his best friend, he started MicroTools, which spe-
cializes in creating a variety of real-time embedded systems. With
a combined embedded systems experience base of more than 200
years, they love to tackle impossible problems together. Bob has
been awarded 11 patents in many areas of embedded systems and
motion control. You can reach him at rjapenga@microtoolsinc.com.

RESOURCES

M. Kerisk, The Linux Programming Interface: A Linux and
UNIX System Programming Handbook, No Starch Press,
2010.

The Open Group, “The Open Group Base Specifications
Issue 7,” 2008, http://pubs.opengroup.org/onlinepubs/
9699919799.

- NEED-TO-KNOW INFO

Knowledge is power. In the computer applications
industry, informed engineers and programmers don't
just survive, they thrive and excel. For more need-
to-know information about some of the topics cov-
ered in this article, the Circuit Cellar editorial staff
recommends the following content:
Concurrency in Embedded Systems
Part 1: An Introduction to Concurrency and Common
Pitfalls
Part 2: Atomicity and TOCTTOU
Part 3: Avoiding Concurrency Problems
Part 4: Introducing Linux and Concurrency
by Bob Japenga
Circuit Cellar 263, 265, 267, and 269, 2012

The first two parts of this article series introduce con-
currency in embedded systems and discuss two com-
mon concurrency design problems. The third and fourth
parts of the series examine generic ways to avoid some
of these problems and describe how embedded Linux
can help you design robust systems with concurrency.
Topics: Concurrency, Atomicity, TOCTTOU, Linux
Go to Circuit Cellar's webshop to find this article
series and more: www.cc-webshop.com

CIRCUIT CELLAR® < circuitcellar.com

QUESTIONS & ANSWERS

Engineering and "“Pure”
Research

An Interview with Colin O'Flynn

NAN: Where are you located?

COLIN: I'm currently living in Halifax,
Nova Scotia, Canada. I'm originally from
Hamilton, Ontario, Canada, and had been
living in Edinburgh, Scotland for almost
two years before I moved to Halifax.

NAN: How did you become interested
in electronics?

COLIN: Like many people in this area, I
did start at a very young age. If I had to
pin one event as the starting of my life-
long interest in electronics, it was getting
one of those "“20-in-1" kits from
RadioShack as a present. My parents
always encouraged my interest in elec-
tronics, but as they were a commercial
airline pilot and a chartered accountant, it
wasn't the case of them initially pushing
me in the same direction they started!

My dad found me a few small “learn-
to-solder” kits, which I enjoyed. At age 8,
I assembled my first real kit, the LED-Tric
Christmas tree featured in the December
1994 issue of Popular Electronics. My
parents have kept bringing that tree out
as a Christmas decoration every year
since, and it still works.

Besides my parents, I also had help
from local people interested in electronics
and became friends with many of the
local electronics store owners. I spent

circuitcellar.com < CIRCUIT CELLAR®

many hours building projects from mag-
azines like Electronics Now, Popular Elec-
tronics, Circuit Cellar, and the various
Forrest M. Mims III books. I find it inter-
esting to see the recent surge in “maker”
culture. It's something that has really
been going on for years. Growing up,
there wasnt such a thing as maker
spaces, but there were local people with
interesting workshops who would share
projects. It's great to see this a little
more mainstream now, as it means more
opportunities for people to get involved
at any stage of their life in this fascinat-
ing world.

Colin’s recent 802.15.4 work involves RadioBlocks,
which are small, wireless modules that use the
“SimpleMesh” open-source mesh networking
software.

Colin OFlynn is an electrical engineer and graduate student at Dalhousie University
who is studying cryptographic systems. He has experience with software programming,
RF layout, and PCB and FPGA design. Here Colin provides some background informa-
tion about his introduction to designing with electronics, his involvement with 802.15.4
wireless communications, and his current projects, including a programmable logic
board.—Nan Price, Associate Editor

NAN: What is your current occupa-
tion? Are you still consulting for
projects related to 802.15.4 wireless
communications?

COLIN: I'm currently a graduate student
at Dalhousie University pursuing a PhD. I
decided to go back to school for the
chance to do more “pure” research. It's
also fun to have access to a range of tools
I wouldnt otherwise get—the lab I sit in
has an anechoic chamber, for example.
And we have most of the latest versions
of high-end software like MATLAB
(including most of the add-ons), 3-D
electromagnetic antenna simulation soft-
ware, FPGA design software, and so
forth.

I'm only loosely involved in 802.15.4
projects for now, and not actively follow-
ing the latest developments and stan-
dards. Having said that, a friend of mine
has gotten involved in creating small,
wireless modules called RadioBlocks.
They use an IEEE 802.15.4 radio com-
bined with a small ARM Cortex-M0 micro-
controller. They use an open-source
mesh networking software we created
called SimpleMesh, so most of my recent
work on 802.15.4 has been around this
project. The mesh software is designed
to do the basic job of sending a block of
data to another node, and otherwise
staying out of the way. I previously did a

—
~
o~
(]
3
[
wn
—
I
™M
~—
o
o~
>
-
©
3
s
o
(0]
[

You can attack a microcontroller-based smart card using a commercial reader combined with Colin’s

OpenADC hoard on an FPGA development kit.

lot of work using IPv6 on such small sen-
sor networks, but haven't been active in
that area lately.

At Dalhousie, I'm working on the area
of side-channel analysis of cryptograph-
ic systems, specifically power analysis.
This area has a simple idea: if you have
a microcontroller or other embedded
controller, it typically has some internal
data bus. When those data lines switch
state, it takes power. But the power
actually depends on the data. Imagine a
databus switching from all 1s to all Os in
a clock cycle, compared to staying at all
1s. Likewise, different operations, such
as a MUL compared to a LDI, have dif-
ferent power signatures. If you measure
the current consumption on each clock
cycle, you can learn something about
the data being processed, and then
often the secret key. Practically
speaking, you can measure this

power trace. In this case, each burst is a
round of the AES-128 computation.

NAN: Many of your projects include
Atmel microcontrollers. Why Atmel?

COLIN: It's no secret I've been a big fan
of Atmel’s AVR microcontroller, but it
wasn’t my first. I don’t know the exact
lineage of my microcontroller work, but
one of the first things I learned on was
an AMD 2900 Evaluation and Learning
Kit. A local electronics store happened to
have it in stock. They had gotten it from
someone cleaning out old inventory, as
even at that time it was old. I added
heatsinks, as the several amps it drew
when powered with 5 V made a lot of
those chips very hot. And, of course, you
had to keep the entire board powered up

current even with an electro-
magnetic probe, so you don't
need to physically modify the
circuit board.

I gave a presentation at Black
Hat Abu Dhabi in December 2012
about some of this work. If you
are interested, the slides and
white paper are available online
at Blackhat.com, or from my per-
sonal website NewAE.com. You
can see the photo above showing
an example of attacking a micro-
controller-based smart card. The
capture software might look
something like where you can see
different computations the card is

This screen-capture software shows different
computations the smart card performs directly
from the power trace.

if you didn’t want to lose you program
you'd been manually entering. From
there, I moved onto a Z80 trainer board,
which let you program with a hex-entry
keypad, and eventually T moved onto
programming it from the computer. I
designed a Z80 computer board but
never built it—I still have the piece of
transparency with the taped out PCB
design and photosensitive PCB on which
I was to expose it. That's more than 10
years old now, so I suspect the chemi-
cals in it have degraded a little!

I forget exactly why I picked up the
AVRs, but I had one of the first AVRs
released, Atmel’s AT90S1200, which I
programmed in Assembly. After Assem-
bly, I programmed them in BASIC (using
MCS Electronics's BASCOM-AVR), going
as far to write a neural network in
BASCOM-AVR. Even today, I think BASIC
gets a bad rap. It was almost the original
“Arduino” environment, as you could
drop down LCD drivers, ADC, and so forth
without ever knowing much about how it
worked, and with a really intuitive
feel. T moved onto C sometime
later, and used C almost exclusive-
ly for embedded development
since. For some time, I was fairly
involved in the tools used in the
AVR world, such as WinAVR. Atmel
donated a considerable amount of
equipment to me, as at the time I
was a high school student using
these devices for science fair proj-
ects. I think that’s a great example
of how such corporate donations
pay off. I've almost exclusively
used AVR processors since I am so
familiar with them because of that.
In addition, as a student with little
money but lots of time, I was
happy to spend hours each day on

The AMD 2900 Evaluation and Learning Kit was one of the first
microcontroller products with which Colin worked.

performing directly from the AVRFreaks.net or working on open-

—
~
o~
(]
>
9]
wn
—
I
™
—
o
o~
>
c
©
=
.
e
(0]
[

CIRCUIT CELLAR® * circuitcellar.com

This is Colin’s Binary
Explorer board. The back
side hides a small complex
programmable logic
device, which is pro-
grammed with the USB-
AVR shown in the upper
right corner. He designed
this to go along with some
creative-common licensed
material for a university
course he taught.

inary Explorer Board™';
+3v3— 3

source tools. While Atmel probably ended up giving me around
$3,000 worth of tools, I'm sure the value of work I performed
for free in terms of open-source tool contributions or forum
posts would be worth many times this.

A funny story around all this work: In undergrad, we used the
Atmel AVR microcontrollers. During one of the first labs they
distributed a tutorial on how to set up the WinAVR tools and
compile your first program. As it turned out, this guide was
something I wrote years prior and had posted to the WinAVR
website. Sufficient to say, I did OK in that class.

NAN: Tell us about NewAE.com. What kind of information
is available on the site?

COLIN: I've run NewAE.com since 2001, although it's not
really designed to be the type of website one checks for new
content daily. If I've spent some time solving a problem that I
think other people could use, I'll put a post up. Sometimes this
is a complete project, such as my IEEE 802.15.4 sniffer.
Sometimes it's just a small post, such as how to set up the
AVR USB keyboard for 5-V operation, which wasn't described
in the manual. I also use it for keeping copies of any published
papers or presentations.

I've more recently been posting some ongoing research to the
site, including blog posts with ongoing projects, rather than just
waiting until it's completely finished! In that vein, I started a
YouTube channel with some technical videos (www.youtube.
com/user/colinpoflynn). A big collection of these are from when I
taught a digital logic course and recorded all my presentations
from that.

My content spans a huge range of topics—everything from
showing my students how to get screen captures, to a demon-
stration of my soldering station, to recordings of my academic
paper presentations. I don't like duplicating work. I'll only go to
the effort of making a video or website post if I really couldn't
find the information elsewhere. Because of this, I don’t have
one specific topic you could expect to learn about. I've never
been aiming to be like EEVBlog!

NAN: You wrote “It's a SNAP: A Flexible Communications
Protocol” (Circuit Cellar 139, 2002) more than 10 years
ago. Do you still use SNAP in any of your current projects?

COLIN: I have to admit that I haven't used SNAP in probably
eight years! Of course now, when needing to network devices,

I'm more likely to turn to a wireless standard.

circuitcellar.com * CIRCUIT CELLAR®

Who says engineers don’t have fun? This was made for some of the documen-
tation for Colin’s Binary Explorer board.

NAN: Your article “Open-Source AVR Development”
(Circuit Cellar 196, 2006) provides an introduction to
the AVR-GCC toolchain for AVR microcontrollers. The
article references the Cygwin project and Sourceforge’s
WinAVR project. How do these components work in the
design?

COLIN: The Cygwin project is still something I use regularly,
as it lets you run a variety of Unix-like tools on Windows. The
Linux command line is extraordinarily powerful, and it is
makes it simple to access things like C compilers, text parsing
utilities, and scripting tools. With Cygwin, one can have a
Linux-like experience under Windows, which I used in that
article to build some of the tools you are developing for AVR.
By comparison, WinAVR is just a number of prebuilt tools for
the AVR development. While it's more work to build your own
tools, sometimes you require special features that were not
available in the premade tools.

NAN: Atmel products have played a starring role in sev-
eral articles you have published in Circuit Cellar. For
example, an AT90S4433 microcontroller was featured in
“It's a SNAP: A Flexible Communications Protocol” (Cir-
cuit Cellar 139, 2002), an ATmega88 AVR RISC microcon-
troller was featured in “Digital Video in an Embedded
System” (issue 184, 2005), an AT45DB041 DataFlash
and an ATmega88 microcontroller were featured in
“Open-Source AVR Development” (issue 187, 2006), and
an AT90USBKEY demonstration board was featured in
“Advanced USB Design Debugging” (issue 241, 2010).
Why Atmel microcontrollers/boards? What do you prefer
about these products?

COLIN: As I mentioned before, I have a long history with Atmel
products. Because of this, I already have the debug toolchains
for their chips and can get projects up very quickly.

When picking boards or products, one of the most important
considerations for me is that readers can buy it easily. For me,
this means I can get it at DigiKey (and I'll check Farnell for our
UK friends). Part of this comes from being in Canada, where
DigiKey was one of the first distributors offering cheap and fast
shipping to Canada.

—
~
o~
(]
3
[
wn
—
I
™M
~—
o
o~
>
-
©
3
s
o
(0]
[

February 2013 - Issue 271

LabJack US-LV

Vs

J:»—-%’\\; oA
< 8
>]_ = -

é‘.".. PEDD YY1}

even further and use the device as a generic program-
mer for other AVRs or CPLDs/FPGAs. For example, you
can mount an AVR on the breadboard, connect it to the
USB interface, and program that through the Arduino
IDE. The entire board would retail for $35 in single-unit
quantity, so it's cheaper than most textbooks. I'm
working on making it a real product with Colorado
Micro Devices right now.

The design environment is the standard Xilinx tool-
chain, although I've made a number of predefined
projects to make it simple enough for students with
zero previous design experience to use. The idea is to
get students familiar with the real tools they might
see in the industry. Around this project, it’s interest-
ing to note I choose a Xilinx CPLD because of my
familiarity with Xilinx devices and design tools. This
familiarity comes from years ago when Xilinx donated
to me a part for a project I was working on. Now
throngs of students will be exposed to Xilinx devices,
all because Xilinx was willing to donate some parts to
a student.

There is always an assortment of half-finished
projects, too. I started designing a battery tester,
which could simulate characteristics you'd typically
see when driving small wireless nodes from coin-cell
batteries. I started planning on using an AVR USB
microcontroller and doing all the data logging myself.
I then found this LabJack device, which simplified my
life a lot, as they had basically a generic USB-based
logging/control module.

NAN: What do you consider to be the “next big
thing” in the embedded design industry?

One of Colin's ongoing projects is a LabJack-based battery tester designed to simulate a

small wireless node.

NAN: Are you currently working on or planning any
microprocessor-based projects?

COLIN: My current big project is something I designed over
the summer of 2012, It's called the Binary Explorer Board and
is something I used when teaching a course in digital logic at
Dalhousie University. I needed a simple, programmable logic
board and nothing I could find was exactly right. In particular,
I needed something with an integrated programmer, several
switches and LEDs, and an integrated breadboard. The stu-
dents needed to be able to use the breadboard without the
CPLD to learn about discretely packaged parts. All the CPLD-
based trainers I found didn't have exactly what I wanted in
this regard.

The embedded part is the USB interface using an Atmel
AT90USB162 microcontroller, although I plan on later upgrading
that to an XMEGA for lower cost and more code room. The
firmware is powered by Dean Camera’s excellent open-
source USB library called LUFA (www.fourwalledcubicle.
com/LUFA.php). This firmware lets students program the CPLD
on the board easily over USB. But the cool thing is you can go

COLIN: Wireless and the “Internet of Things” will
eventually be a big thing, which means design engi-
neers will need to become more familiar with things
like protocols and realistic transmission characteristics. I use
the word “realistic,” as part of this world is separating hype
from reality. There's certainly a huge disconnect between the
marketing hype around all these various wireless protocols
and how well they work in practice. When designing a product
that will use a wireless technology, it’s likely some commercial
off-the-shelf (COTS) module will be used, so the engineer may
think they can remain blissfully unaware of RF or networking
things. But the engineer still needs to have a rough idea about
how many devices might fit in an area on a single network or
the advantage of selecting certain protocols.

Another thing of interest to me is programmable logic, such
as FPGAs. It's been interesting to see the tools that try to turn
anybody into an FPGA designer becoming more mainstream, or
at least letting you program FPGAs in more common languages
(e.g., C/C++). They are still fairly specialized and more likely to
be used by a hardware engineer looking to improve productivi-
ty, compared to a software engineer who needs to offload an
algorithm into a FPGA. But I think they could fairly quickly get
to the point that engineers with some FPGA experience could
implement considerably more complex designs than they would

CIRCUIT CELLAR® * circuitcellar.com

Here is Colin at his custom-built workbench.

have otherwise been able to had they been required to design
everything from scratch.

In a somewhat similar vein, we are starting to see the avail-
ability of multicore devices coming down to embedded levels.
Learning to program them in a way to take advantage of these
new cores is a useful skill to pick up. I recently started using
both the OpenMP API and Cilk++ development software on
some of my programs. My work wasn't targeting an embedded
project, but instead regular full-size multicore computers, but
it's still a useful (and fairly simple) skill to pick up.

NAN: Tell us a little about your workbench. What are
some of your favorite design tools?

COLIN: My initial workbench was the kitchen table, although
other family members were frequently concerned about eating
in the same space as these various items with warning labels
about lead. My next workbench was a long, custom-built bench
in Hamilton, Ontario. My current bench in Halifax was again
custom-built, and I'll take you few of its features. I'd like to
point out by “custom-built” I mean built by myself with a jig-
saw and some plywood, not an artesian finely crafted piece of
furniture.

Due to a back injury, I work standing up, which you can’t see
in the photo. It's actually quite refreshing, and combined with a
good quality antifatigue mat and stool to lean up against means
I can work long hours without tiring. A cover comes down to
hide everything in my desk, which was a feature partially
required by my significant other, who didn’t want guests to see
the typical mess of wires it contains. When closed, it also gives
it some protection against any rogue water leaks. For my com-
puter, I use a trackball instead of a mouse, and the keyboard
and trackball are mounted on a plate tilted underneath the desk
in a “negative” tilt angle, adjusted to most natural angle. And,
because there is no way to see the keyboard while typing, it
tends to keep anyone else from borrowing my computer to look
something up!

I've wired a ground fault interrupter (GFI) into the desk, so
all my power outlets are protected. If I ever did something
dumb like dropping a scope ground on a live wire, the GFI sock-
et would at least give me a hope of protecting the scope and
myself. There are many outlets above and below the desk, and
also a ground jack for the antistatic strap beside the thermal

circuitcellar.com * CIRCUIT CELLAR®

Colin stores his SMD parts in envelopes for easy reference.

wire strippers. The outlets under the desk let me plug in things
in a hidden manner—printers, USB hubs, and other permanent
devices get wired in there. I've wired a number of USB hubs to
the top of my desk, so I typically have around 12 free USB slots.
You always seem to run out otherwise!

Most of my tools are off the desk and stored in the drawers
to either side. I made the “drawers” just pieces of wood with
minimal sides—the idea being most of the time you are placing
PCBs or tools down, so the lack of high sides prevents you from
piling too much into them! All the cables get stored on hooks to
the left of my desk, and I've got a whiteboard that sticks up
when I'm working on a problem.

1 store all my SMD parts in small envelopes stored in index
card holders in the bottom left of my desk. While I'm not a
static-phobic, I also didn’t want to use plastic film strips or
plastic bags. So the paper envelopes at least I hope don't
generate much static, even if they don't dissipate it. It's very
easy to label all your parts and also this system holds up to
a high dynamic range of stock numbers. For example, capac-
itors get split into 10.1-99.9 nF, 100 nF, 100.1-999.9 nF, and
so forth. Because you seem to end up with loads of 100-nF
capacitors, they get their own envelope. It’s trivial to change
this division around as you get more parts, or to group part
sizes together.

In terms of interesting tools: my soldering station is proba-
bly my favorite tool, a Metcal MX500 I got used from eBay. The
response time on these is unbelievable. I put a video up to
show people just because I've been so impressed with it. There
are other manufactures that now make stations with the same
RF-heating technology I believe, and I always encourage
everyone to try one. I've been using the DG8SAQ Vector Net-
work Analyzer (VNWA) for a while too. It's a very affordable
way to get familiar with VNA and RF measurements. It's espe-
cially fun to follow along with some of the “Darker Side”
columns in Circuit Cellar. Rather than just hearing about the
mysterious world of RF, you can do experiments like viewing
the response of several different decoupling capacitors mount-
ed in parallel. I've got an old TiePie TiePieSCOPE HS801 paral-
lel-port oscilloscope mounted underneath my desk, and still
use it today. A lot of my work is digital, so have an Intronix
LogicPort digital analyzer, a Beagle USB 480 protocol analyzer,
and oodles of microcontroller programming/debug tools from
different manufacturers. &

—
~
o~
(]
3
[
wn
—
I
™M
~—
o
o~
>
-
©
3
s
o
(0]
[

February 2013 - Issue 271

»
(=]

'[HE CONSUMMATE ENGINEER oy ceorse novaco ccanae

Fault-Tree Analysis

Fault-tree analysis tracks a system event—most often a failure—down to its
root cause. It also supports the system’s safety and reliability assessment
by determining the event’s probability of occurrence.

n my last Circuit Cellar article, 1 discussed

failure mode and criticality analysis (FMECA).
This month, I'll examine a similar tool, fault-tree
analysis (FTA), which is also known as event-tree
analysis (ETA).

FMECA and FTA are similar. Their fundamental
difference is that FMECA is bottom-up analysis,
while FTA (or ETA) is top-down analysis. FMECA is
used to trace the propagation of a failure of a com-
ponent or a function up to the effect on the sys-
tem’s behavior. The tree analysis starts with an
event, which is then traced down. If that event is a
failure, the analysis is called

draw Boolean symbols reflecting the system archi-
tecture, insert previously generated reliability
numbers, and calculate results. But the programs
can't understand the system’s structure or faults
propagation. That's up to you to provide. So, while
the module is not a part of the free mean time
between failures (MTBF) calculator, you can use
any graphics program to draw FTA, or it can be
hand drawn.

FTA and FMECA use the same reliability data,
but they present the data from different perspec-
tives. To analyze a system, both analyses are

needed. FTA starts with an inter-

FTA. FTA then tracks down the

esting or problematic system

failure to identify its root Event A

event or a behavior. Take, for

cause. Like FMECA, you can
perform the analysis on the
functional block level or you

A=0.155/10°h example, the issue of some auto-
mobiles’ undesired acceleration. It
would be difficult to use FEMACA
to determine the root cause of

can analyze the individual | " | |

component levels and their

c acceleration. However, FTA will

specific failure modes. This A=2429
can become a gigantic task,
especially when many events
need to be analyzed.

1=0.064 quickly drill down the system to

identify all possible causes and
their individual probabilities.

[o|[=][*][<]|| PROBABILITY

RELIABILITY x=0002
Similar to FMECA, you need =427

A=0002 A=0.062 Figure 1 shown an example of

FTA. As you can see, logic symbols

components’ estimated failure
rates obtained during reliabili-

are mainly used for OR and AND
functions. Here, event A can only

ty prediction. The commercial | H || I

|| J | occur if events B and C take place.

reliability-prediction programs |r=0295 a=1532

%=06 Event B can be caused by either

I mentioned in my previous
articles include modules to
assist in FTA generation. They of FTA.

Figure 1—Logic symbols for OR and AND
functions are mostly used in this example

event D or E, while event C can be
the result of events F or G. Then,
event E can be the result of any

CIRCUIT CELLAR® * circuitcellar.com

one of three events, H, I, and J. This can continue a)
down until a blown transistor, a broken wire, or an
operator’s erroneous input is identified as the cul-
prit. Each impetus has a probability attached to it,
which is derived from the failure rate lambda (A)
when preparing the reliability prediction.

Notice that when either impetus can cause a
resulting event (described by Boolean function OR)
the lambdas are added. When two or more events
must concurrently occur for a certain result, the

Enable 1 D—@

———<JLoad b) —<—lLoad
Q2
3 Q4
Q1 .
E Enable 1 E Enable 2
Enable 2

model is Boolean AND (the failure rates multiply).
The upshot of all this is that to achieve an event’s
low probability to satisfy specification require-
ments, you often have to include some AND gates in the archi-
tecture. This is usually accomplished through redundancy and
diagnostics.

Consider a simple example. Your embedded controller acti-
vates a solenoid valve that delivers high-pressure hydraulic fluid
to an actuator. Safety standards require that the solenoid valve
must never be accidentally energized. “Never” is typically con-
sidered a probability of an event less than 10~* per million hours
(i.e., one in 114 billion years), which is several times the age of
the universe, but you will find systems with even tougher
requirements. The probability of deployment of aircraft engine
thrust reversers in flight, for instance, is typically less than 10-12
per million hours.

In the example, the solenoid valve is energized through a
power MOSFET. For starters, assume the controller is perfect

Gigabit Technology

* ARM-based

¢ System on a Chip

* Gigabit Ethernet

¢ Small, Cheap, Fast/:

* Both QFP.and BGA Paclﬁégés‘

21

e Standard Developmént"i'ool;’)

£, .5 100 DE
* Royalty Free RTOS, TQPJI
g 510

4 o
i N ' PZ3
The gridARM™ System on a Chip (SOC) is a high performance, low cost,
low power, highly integrated single chip with 10 / 100 / 1000 Mbps Ethernet,
USB, CAN, Serial, SRAM Memory, SPI, 12C, RTC and internal peripherals
designed to provide a complete solution for embedded applications.

THE NETWORKING EXPERTS

Leadersin the
embedded and
networking
marketplace
providing network
hardware, high
quality software
and services

iz gridconnect.

800.975.4743 USA ® 1630.245.1445
gridconnect.com/gridarm.html

circuitcellarcom <*® CIRCUIT CELLAR®

Figure 2a—With two MOSFETs in series, both would have to short out to energize the
valve. b—You would need to connect two, three, or more MOSFETSs in parallel to ensure
high probability of the valve to be energized.

with a A = 0 failure rate, so there is no possibility it will issue a
wrong command. The valve, by design, cannot open without
being energized. Therefore, the only cause of the hydraulic
pressure being present would be solenoid valve energization
through a shorted MOSFET.

The probability of a typical MOSFET failing with respect to its
operating conditions is about A = 1.895 x 10-* per million
hours. Distribution of its failures is roughly 50/50 for an open
or short circuit, so the probability of the unwanted valve
energization is A = 0.9475 x 10 This doesn’t satisfy the
specification.

By putting two MOSFETSs in series, both would have to short
out to energize the valve (see Figure 2a). The probability of
that is 8.97 x 107, Its close, but not close enough! It is still
too high by almost an order of magnitude, the probability of a

1-40 Layer PCB
Components Sourcing

February 2013 - Issue 271

D

7

February 2013 - Issue 271

»
(<]

wrong command notwithstanding. You

may be able to derate the MOSFET or Sensor Q
find another MOSFET to obtain a lower §§ u,
failure rate. Failing that, you must use X,
three MOSFETs in series. This would al

AtoD
result in the probability of unwanted °

energization of 8.5 x 1073, Combined
with the probability of the controller
issuing a wrong command, that would
likely take you to an acceptable result
less than 10-°, There may be an oppo-
site requirement. You would need to
connect two, three, or more MOSFETs in
parallel to ensure high probability of the
valve to be energized (see Figure 2b).
Needless to say, the “enable” commands

Processes X, and X,
are dissimilar to

achieve the same result

Fault occurred

required two years of redesign. In the
meantime, a “dead man’s switch” (i.e., a
push button the operator must hold down
for the system to operate) had to be added
until the redesigned controllers became
available. All those delivered in the mean-
time had to be replaced. It was expensive
and embarrassing. Had the engineers done
their homework before embarking on the
design, the embarrassment, the failure to
deliver what the customer wanted on time,
the budget overruns, and the penalties
would have been avoided.

With software, it is always a good idea to
run critical functions through two or more
independent paths to reduce the probabili-

Continue

must be independent to avoid a single-
point failure.

Because this issue affects the embed-
ded controller’s architecture, it is important to perform the reli-
ability and safety analyses as early as possible.

20/20 HINDSIGHT

Ignoring the importance of these analyses may lead to disas-
trous results. I witnessed a situation where engineers per-
formed those analyses at the end of the program, just to satis-
fy the customer’s deliverables list. Their controller missed the
safety target by a mile. The architecture was wrong. The repair

critical data in software.

http://mbed.org |

Rapid Prototyping for Microcontrollers ARM

- o

Figure 3=This is one approach to processing

ty of a forbidden execution. Figure 3 shows
one approach,

Here, a sensor data is digitized by two
ADC channels and processed by two different function calls. If
the results are identical, the process can continue. Depending
on the required safety level, the processing can be done by
one or several independent microcontrollers, separate ADCs,
and so forth. For high reliability and to avoid common-mode
failures, you need to use dissimilar hardware and dissimilar
software, including different algorithms, if possible. The com-
binations are endless.

I have demonstrated how important it is to perform safety
analyses in a timely manner. Without them, the success of
even a simple project may be unpredictable. Don’t underesti-
mate the importance of preliminary analyses. You may not like
the results. &

George Novacek (gnovacek@nexicom.net) is a professional engineer
with a degree in Cybernetics and Closed-Loop Control. Now retired,
he was most recently president of a multinational manufacturer for
embedded control systems for aerospace applications. George wrote
26 feature articles for Circuit Cellar between 1999 and 2004.

RESOURCES

Defense Technical Information Center, “Failure Mode,
Effects, and Criticality Analysis (FMECA),” AD-A278-508,
1993, www.dtic.mil/dtic/tr/fulltext/u2/a278508.pdf.

, “Reliability Techniques for Combined Hardware
and Software Systems,” RL-TR-92-15, 1992,
www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA256347.

Department of Defense, “Procedures for Performing a
Failure Mode, Effects and Criticality Analysis,” MIL-STD-
1629A, 1980, http://sre.org/pubs/Mil-Std-1629A.pdf.

——, “Standard Practice System Safety,” MIL-STD-882E,
2012, www.system-safety.org/Documents/MIL-STD-
882E.pdf.

G. Novacek, “Failure Mode and Criticality Analysis,” Circuit
Cellar 270, 2013.

SoHaR, Inc., www.sohar.com.

CIRCUIT CELLAR® * circuitcellar.com

ABOV L THE GROUND PLANK

by Ed Nisley (USA)

Arduino Survival Guide

Digital /0

The digital I/O bits on an Arduino connect it to the real world, but
those microcontroller pins have analog properties that many designers
neglect. Ed explores how the components inside the microcontroller
affect the circuit’s operation and shows how to avoid some common

problems.

ssuming that you're providing proper

power to your Arduino board, perhaps
using the techniques I described in my October
column, you must now connect the microcon-
troller’s digital input and output bits to your proj-
ect. Unlike the ideals worlds created with pure
programming, the real world imposes require-
ments on both your circuitry and the Arduino,
that, if ignored, can damage both sides of the
interface.

In this column I'll examine the circuitry behind
the Arduino’s digital I/O pins and explain how it
interacts with your circuitry. Because you can find
Arduino programming information elsewhere, we
can concentrate on the analog electrical properties
of the digital pins: yes, digital pins have analog
properties.

BEHIND THE PINS

Photo 1 shows the section of an Arduino UNO
board with its 14 digital I/O pins, one ground pin,
and several other pins that aren't relevant here.
The digital I/O pins, named 0 through 13, line up
along the edge in two headers. The small tilde (~)
characters denote the six digital pins that can
produce PWM outputs, a topic that I'll discuss in
the next column. Incidentally, the tiny gap
between pins 7 and 8 dates back to a layout error
on the original Arduino PCB that has baffled and
annoyed every single user since then.

Three digital I/O pins have predefined functions

circuitcellar.com < CIRCUIT CELLAR®

that will probably interfere with any attempt to
use them in your circuitry. Pin 13 connects to the
standard LED on the Arduino board: the Blink
sample sketch flashes that LED and your sketch-
es should do the same. Pins 0 and 1 provide seri-
al 1/0 through the USB adapter chip, so you
should regard them as dedicated to that function.

The Arduino’s six analog input pins, nhamed A0
through A5, can also serve as digital I/O pins.
Some versions of the Arduino Pro Mini board
break out the A6 and A7 pins, for a total of eight
additional digital 1I/0O bits. Everything in this col-
umn applies to the A0 through A7 pins in digital
mode; I'll discuss their analog functions in the
next column.

Many of the problems occurring in Arduino
projects arise from misunderstanding the interac-
tion between an external circuit and the micro-
controller’s hardware. For example, although we
generally think of digital pins as always having

voltages close to 0 V and V_, the circuitry shown

in Figure 1 suggests some additional complexity.

o o0 hlﬂlﬂ‘ﬂ"mn&-ler
1 bR 1 o~ 4

DIGITAL (PWM~) F B |

Photo 1—Arduino boards bring out 14 digital 1/0O pins, of
which six can also act as PWM analog outputs. The TX/RX
pins connect to the USB interface and generally aren't useful
for other purposes. (Photo adapted from http://arduino.cc/
en/Main/ArduinoBoardUno)

February 2013 - Issue 271

~
~
o~
(]
>
wn
v
—
I
™
—
o
o~
>
c
©
=
-
e
(]
(g

VCC
@]
FET
=% Pullup
Veo —~al enable Output
enable
Driver 1
D2 = 28 t 4 < 2 Oupul bl Iogic
/0 - PIN R
C
D1 = 5 lnpuzt -
{__Input bitlogic]
10p Tnput bt Togic
GND GND

Figure 1—Behind each I/0O pin lurks a collection of ESD protection diodes, a
switched pullup resistor, some stray capacitance, and the internal I/O hard-
ware that makes the pin operate according to the documentation.

The first line of the Absolute Maximum Ratings in Figure 2
require that any voltage applied by the external circuit must
be between 0.5 V below circuit ground (GND) and 0.5 V
above the supply voltage (V). A standard Arduino board has
V.. =5V, so the pin voltage must not fall below -0.5 V or rise
above +5.5 V. D1 and D2, the protection diodes in Figure 1,
begin conducting when the pin voltage exceeds those limits,
clamping the pin one diode drop beyond either GND or V. If
the external circuit does not limit the current, the ensuing
short circuit will destroy at least the diode and, more likely,
the entire chip.

The third line of Figure 2 specifies a maximum current of
40 mA that the external circuitry may ram into or draw from
any pin under any circumstances. It does not, contrary to what
some folks seem to believe, mean that the microcontroller
actively limits the pin current to 40 mA: your circuit must
enforce that limit to prevent damaging the microcontroller.

For example, if you connect a digital output pin directly to
V.., nothing will happen as long as the pin driver remains set
to HIGH. However, if the Arduino sketch sets the output LOW,
the pin driver will attempt to pull the power supply to 0 V.
That attempt won’t succeed and the driver will sink far more
than 40 mA while destroying itself.

A 125 Q resistor inserted in series between V_. and the pin
will limit the fault current to about 40 mA under the worst-
case condition:

R=—=———=125Q

40 mA
As you might expect, the driver cannot maintain 0 V at the

V_5V-0V
I

Voltage on any Pin except RESET with
respect to GND

-0.5VtoV, +05V

Maximum Operating Voltage 6.0V
DC Current per I/0O Pin 40.0 mA
DC Current V.. and GND Pins 200.0 mA

Figure 2—These Absolute Maximum Ratings from the ATmega328 datasheet
set the limits for operation, but your design should also respect the limits
set by the rest of the specifications.

pin while sinking the Absolute Maximum current, so the actual
current will be somewhat lower. The first line of Figure 3 states
that V,, the output voltage for a logic LOW condition, will be
less than 0.9 V while sinking 20 mA. You can assume the actu-
al output voltage will rise as the pin sinks more current, but the
datasheet does not provide a specification.

Pop Quiz: Calculate the resistor value that will maintain a
valid V,, at the rated test current.

Now that you have an idea of what not to do with the
microcontroller’s pins, we can examine their behavior during
normal operation.

DIGITAL INPUTS

After a hardware reset, whether caused by turning the
power on or releasing the RESET button, the Arduino firmware
leaves all the digital pins configured as inputs. The DRIVER
shown in Figure 1 is disabled, the FET above resistor R is
turned off, and the Schmitt trigger INPUT converts the volt-
age on the pin to the LOW or HIGH value that the Arduino
firmware will return when your sketch executes a digital
Read() function.

Pop Quiz: Assume that the Arduino has just emerged from a
hardware reset and switch S1 is open, as shown, in Figure 4.
Will a digitalRead() return LOW or HIGH?

Bonus 1: What value will digitalRead() return with your
finger on the switch, but not pressing hard enough to close
the contacts?

Bonus 2: Immediately after you release the switch?

Bonus 3: One minute later?

As nearly as I can tell, every single Arduino user has rea-
soned (at least once!) thus:

A. Because a closed switch always returns LOW

B. An open switch must return HIGH

C. Therefore, the correct answer to all four questions must
be HIGH.

After some experience, most users will realize all the

answers are “There's no way to know.” If its

Symbol | Parameter Condition Min Max any consolation, T confess to falling into that
v, Output Low Voltage | I, = 20 mA, V= 5V 0.9V trap myself. _
V., OutputHigh Voltage I, =-20mA V=5V | 42V Because open switch
I | contacts present an 2l yoThIN
vV, nput Low Voltage Ve =24V -55V -0.5V 0.3V, extremely high resist- S1E'1
Vi, Input High Voltage | V.. =24V -35V 06V, |V, +05V ance, the complete cir-
I Input Leakage V.. = 5.5V, pin low/high 1 pA cuit for Figu.re 4 actual- GXD
Current (absolute value) ly appears in Figure 1:

Figure 3—These DC Characteristics from the ATmega328 datasheet define the microcontroller’s
normal operating conditions. Although your circuit may exceed the DC limits (but not the
Absolute Maximum Ratings!), the results aren’t specified. The datasheet includes many foot-

notes and additional conditions that don’t appear here.

all of the interesting
components lie inside
the microcontroller, not
in the external circuit,

Figure 4—A simple push
button switch on an input
pin may not operate as
you expect without proper
configuration.

CIRCUIT CELLAR® * circuitcellar.com

and, being hidden from view, nobody considers their Arduino pin driver - direct LED Load
effect on the circuit’s operation. With only one exter- 80
nal component that’s not really there, what could pos- 70 f Lt
. 2 PinlOL @ - N. PinIOH
sibly go wrong 60 | 7 NG
The answer involves capacitor C, which represents 50 | o \\
. - _ Pin ab; N
the stray capacitance from all of those internal com Pin current - mA_ 40 | > ! In ahs max s
ponents to ground. Any current, whether from the pin 30 | S N
or the IC, will add to or remove charge from the 20 b —2 Pin DC Nominal max N
N
capacitor and, as with all capacitors, more charge 0k ,,/ .
implies a higher voltage: IS S R S SN U S SRS N B M
0.0 1.0 2.0 3.0 4.0 5.0
V:g Pin voltage - V
C

The total charge moved by a constant current
equals the product of the current and the time it
flows:

Q=IxT

Even with nothing connected to the pin, current may flow:
Figure 3 gives the specification for I, and I, the input leak-
age currents with an external circuit holding the pin LOW or
HIGH. Under those conditions, less than 1 pA will flow
through the pin to the circuit. The spec gives the absolute
value of the current, not its direction, so you must not
assume current will always flow out of a pin held below V, or
into a pin held above V . Of course, leakage current won't
:row when the voltage on the capacitor reaches the limits of
lither 0 V or V..

| GIRGUIT
CELLAR |

| EBIToR f@editor_ cc

#microcontroller#circuit#embedded#FPGA#electricity#EEPROM

Figure 5—The MOSFET pin driver has an on-state resistance of about 45 mQ for both
high and low outputs. The external circuit must ensure that the resulting current
remains below the maximum limits.

For the circuit in Figure 4, the capacitor will accumulate
charge from the leakage current, with the pin voltage chang-
ing accordingly. The specs don't define the leakage current in
that situation, but 1 pA should be a reasonable estimate.
Combining those two equations, solving for V/T and plugging
in the numbers shows how rapidly the pin voltage will
change:

V 1 _1pA

—=—=—"-100V/s
T C 10pF

That means the leakage current can change the pin voltaﬂe
by 5 V (the maximum possible difference) in 50 ms. Because

o Keep in touch and interact
with the Circuit Cellar
editorial department

Pitch ideas for articles

#tech#volts#ADC#analog#DSP#WiFi#robotics#programming
#RFID#code#schematic#logic#PWM#electronics#debug#bit#MCU

#RTOS#ohm#byte#sensor#engineering#PCB#signal#processor

#RAM#servo#CPLD#encoder

Ewittel“" Follow us on Twitter

‘ (|ircuitcellar.com ® CIRCUIT CELLAR®

Stay informed with valuable
product announcements

Learn about upcoming industry
events, conferences, and more

Fel|)ruary 2013 - Issue 271

[5)]

[ury

~
~
o~
(]
>
wn
v
—
I
™
—
o
o~
>
c
©
=
-
e
(]
(g

Figure 6—An output pin can't directly drive
an LED: don't try this on your bench!

1/0 - PIN
LED

GND

the current can flow in either direction; however, you cannot
predict whether the pin will be LOW or HIGH even a fraction of
a second after the switch in Figure 4 opens. In fact, it may be
neither: the net leakage current may be zero at some capac-
itor voltage between the limits.

The capacitor charge can change as the result of an exter-
nal electrostatic field or a strong RF signal. Even though a
short length of wire or PCB trace forms a poor low-frequency
antenna, the electric field intensity due to nearby power line
currents can impose a 60 Hz (or 50 Hz, depending on the
power frequency) waveform on the input pin voltage. An
Arduino sketch expecting a pushbutton signal will produce
bizarre results when the input toggles at 60 Hz!

The Arduino doc suggests using a bare digital input to
sense photodiode current, build capacitive switches, and
measure other interesting physical phenomena. Unless your
circuit includes such esoterica, however, you almost certainly
want to turn on the FET that connects the digital input pin to
V.. through R, the pullup resistor. The current through the
resistor will be at least 100 pA with the pin at 0 V, far more
than the leakage current, and will ensure the pin remains
HIGH with no external circuitry.

Prior to Version 1.0.1, the Arduino mechanism for enabling the
pullup resistor mimicked the microcontroller’s hardware design:

pinMode(pin_number, INPUT);
digitalWrite(pin_number,HIGH);

I think the notion of writing to an input bit seemed so
counter-intuitive that many users simply could not remember
it, leading to erratic input behavior and considerable head-
scratching. The current Arduino firmware performs the write
automatically when it encounters this statement:

pinMode(pin_number, INPUT_PULLUP);

DIGITAL OUTPUTS

Because all digital I/O pins default to being inputs after a
reset, the Arduino sketch must specifically configure each
output bit as part of the setup() function:

pinMode(pin_number,OUTPUT);

Prior to that statement, the pin behaves as an input with
its pullup resistor disabled. Afterward, the DRIVER block in
Figure 1 will hold the pin LOW. If the external circuit doesn’t
have a pulldown resistor, the pin voltage may change from
HIGH to LOW when it becomes an output.

The DRIVER block in Figure 1 contains a pair of MOSFETs
that connect the pin to either GND or V_., corresponding to
the output from the Arduino sketch:

ccr

digitalWrite(pin_number,LOW);
digitalWrite(pin_number HIGH);

The Absolute Maximum DC Current Per I/O Pin specifica-
tion, shown in Figure 2, requires that the external circuit
must prevent more than 40 mA from flowing into or out of
the pin. As discussed earlier, a 125 Q resistor will suffice, but
the V,, and V, specifications in Figure 3 suggest somewhat
more gentle handling, with a test current of only 20 mA.

Figure 5 plots typical I, and I, currents against pin volt-
age (using data points eyeballed from graphs in the
datasheets), showing that the DRIVER FETs have an on-state
resistance of about 45 mQ. A datasheet footnote gives the
strict requirements permitting pin current far in excess of the
Absolute Maximum limits, but very few practical circuits can
comply with those rules.

Figure 6 shows one regrettably common circuit that oper-
ates outside the rules: a 5 mm LED driven directly from an
Arduino digital output, without a ballast resistor to limit the
current. This seems to be a classic case of the irresistible
force meeting an immovable object, but, at least for some
LED colors, it comes surprisingly close to working.

Although you could build a Spice model to find the current
through the LED, there’s an easier way that dates back to the

As shown in Figure 1, the pullup resistor value may lie
anywhere between 20 kQ and 50 kQ. If your circuit
requires a specific resistance, you must provide a suitable
external resistor and leave the internal pullup disabled:

pinMode(pin_number, INPUT);

Remember that a digital input pin requires a pullup
resistor only when the external circuit doesn’t provide a
low-resistance path for the leakage current. A logic gate
or driver will hold the input in a known state without the

T T T
Pin [OH

70 / S]
60 | N i

| N

1 N /

Pin current-mA 40 | Pin-abs max “ N]

l N
30 “ / /// ‘o |
20 LED Max / N . 1

\
10 F i
Ay
0 L L I I I i i | i N\
0.0 1.0 2.0 3.0 4.0 5.0

Arduino pin driver - direct LED Load
80 T T T T T

Pin voltage - V

need for a pullup resistor.

A microcontroller with all inputs and no outputs can’t
do much more than dissipate power, so let’s look at how
digital outputs work.

Figure 7—The intersection of an LED load curve with the Arduino pin driver source
curve gives the actual current and voltage in the circuit. The blue and violet LEDs
operate just barely within the microcontroller’s current limit, but far beyond the
maximum DC current allowed for a 5 mm LED. The red and amber LEDs would
operate, perhaps briefly, at 90 mA.

CIRCUIT CELLAR® * circuitcellar.com

1/0 - PIN

+12V

White LEDs

Figure 8—An Arduino cannot directly drive a white LED strip light, because
the applied voltage exceeds the pin limits. The protection diodes in Figure 1
will conduct current when the pin driver goes HIGH.

early days of vacuum tube circuits: graphical load-line analy-
sis. The general idea involves plotting both the driver and
load characteristics on a single graph, so that the axes show
the current and voltage common to both devices. If the
curves intersect, the coordinates of that point give the cur-
rent and voltage that satisfy both characteristics.

Figure 7 shows the load-line analysis of several LEDs from
my collection, along with the pin driver V_, curve from Figure
5. The violet LED intersects the driver curve at (4.0 V, 40 mA)
and the blue LED at (4.1 V, 35 mA). Both LEDs barely meet
the Absolute Maximum limit for an Arduino pin, so you might
think such a circuit would work.

However, most 5 mm LEDs have a 20 mA Absolute Maxi-
mum DC current limit due to their power dissipation capaci-
ty. Those two LEDs dissipate 150 mW, far over their rating,
and will probably fail in fairly short order.

The green and white LEDs would operate around (3.5 V,
55 mA) and burn nearly 200 mW. The red and amber LED
curves would intersect the I, curve outside the graph at
about (2.2 'V, 90 mA), also dissipating 200 mW. I have seen
such a project (not one of mine) using unballasted red
LEDs: they were very, very bright!

The curves in Figure 7 can help you select the ballast resis-
tor quickly and easily. First, pick the operating current, then
read the pin output voltage and the LED forward drop at that
current. The ballast resistor must drop the remaining voltage
while carrying the LED current. Driving a green LED at 10 mA,
for example, requires a 170 Q resistor:

R=—=——"—=170Q

vV _47-30V
I 10mA

Remember that those curves apply to the LEDs in my col-
lection, so you should measure the LEDs you intend to use at
the appropriate current.

Homework: Analyze the pin circuit when sinking current
from an LED connected directly to V... You will find the LED
and pin data in this column’s downloadable files.

Bonus: Calculate the proper ballast resistor for a green LED
in that circuit.

The circuit in Figure 8 shows another tempting circuit that
might work: a white LED strip light connected directly to an
Arduino pin. The voltage at the pin seems acceptable, as the
forward drop of three white LEDs subtracts 9.6 V from the
supply at their normal 20 mA operating current, leaving 2.4 V
at the pin. The built-in 150 Q resistor limits the current from
the 12 V supply to well within the pin driver limit:

circuitcellancom < CIRCUIT CELLAR®

I:12—(3 X 3.2V) l6mA
150 Q

Figure 1, however, shows that D2, the upper protection
diode, will be forward-biased to V.. when the driver goes H1GH.
Remember that the current through a diode depends exponen-
tially on its forward voltage, which means that the simple
“diodes don’t conduct below the knee” rule-of-thumb does not
predict their actual behavior.

Rather than risk incinerating an Arduino, I breadboarded a
section of LED strip with an ordinary diode and a bench supply.
Applying 7 V produced about 2 PA, enough to barely light the
LEDs in a tribute to modern LED efficiency. Admittedly, they
were dim, but most applications require complete extinction
rather than an “almost off” glow.

Homework: Duplicate that experiment with a few red or
amber LEDs.

The bottom line is that you must use a buffer between the
pin and the LEDs to isolate the port from both excessive current
and high voltage. Small MOSFETs with logic-level gates make
nearly perfect buffers for most projects, because their relative-
ly high channel resistances don't dissipate much power for low
currents.

Along the same lines, small relays dont work well when
directly connected to Arduino outputs without a buffer. An out-
put pin obviously can't drive a 12 V relay coil, but even 5V DIP
relays generally require more current than the pin can provide.
In either case, you must also manage the winding’s inductive
current during turn-off with a flyback diode and, perhaps, a res-
onant snubber circuit on the MOSFET drain.

Finally, the last line of Figure 2 imposes an overall 200 mA
limit on the total current through the microprocessor’s power
and ground pins. While driving 20 mA through a few output pins
will be no problem, driving 20 mA through all 19 available dig-
ital outputs at the same time will certainly not work the way you
expect!

CONTACT RELEASE

Now that you understand the limits of the hardware behind
the digital I/0 pins, your Arduino program should see and con-
trol the real world without confusion. Well, at least confusion
due to analog effects; any other confusion is just a simple mat-
ter of software... &

Ed Nisley is an EE and author in Poughkeepsie, NY. Contact
him at ed.nisley@ieee.org with "“Circuit Cellar” in the subject
to avoid spam filters.

RESOURCES

Arduino information and photos, http://arduino.cc.

Atmel Corp., ATmegal68 and ATmega328 microcontroller
datasheets, www.atmel.com/devices/ATMEGA328P.aspx.

SOURCE
Arduino UNO
Arduino| http://arduino.cc/en/Main/ArduinoBoardUno

February 2013 - Issue 271

ul

3

5

February 2013 - Issue 271

H

][HE DARKER SIDE

by Robert Lacoste (France)

Introduction to Standing

Waves

Standing waves are oscillations that remain in a constant position. This
article describes a signal generator-based experimental design you can use
to see and measure standing waves. It also shows how signal reflectors
are used to generate standing waves on a transmission line.

elcome back to the Darker Side.

Some concepts, such as voltage
between two nodes or current circulating into a
wire, are easy to understand. On the contrary,
some are a little more difficult to grasp. Standing
waves—often encountered when working on high-
frequency signals and in particular antennas—are
probably in this second category. The good news is,
experimenting with standing waves is an excellent
way to understand them!

In this article, I will demonstrate how you can see
and play with standing waves. Moreover, I will use
a homemade low-cost experimental setup that can
be easily reproduced with a signal generator.

WHAT ARE STANDING WAVES?

Let's start with the basics. What are standing
waves? Imagine you have a sine wave propagating
at a constant speed on a given transmission medi-
um. It could be a mechanical vibration on a rope, a
sound vibration in the air, or an electrical signal over
any kind of transmission line. Imagine now that, for
some reason, this forward wave is reflected back at
a given point. The reflected wave will have the same
wavelength and will propagate backward at the
same speed. Depending on the reflector’s character-
istics, this reflected wave will have a given amplitude
and phase, but it will inevitably add up to the forward
wave (see Figure 1). Depending on the relative
phase between the forward and the reflected waves,
the resulting amplitude at a given point can be either
higher (i.e., constructive interference) or lower (i.e.,
destructive interference) than each individual wave.

Note: I used the LibreOffice Calc spreadsheet
program to generate the figures in this article. The
corresponding spreadsheets are available on Circuit
Cellar's FTP site.

Now, the fun part. What happens if you exam-
ine the experiment over time? As the forward
wave propagates, the reflected wave is succes-
sively in and out of phase with the former, and the
resulting combination’s amplitude oscillates.

15

1
05

L] Incident sigral
ast \OS[1 \1&f 2 \2sf 3 \35] 24 5] §

A

15

1
s

0 — Rafiscted signdl
ns° B 1 15 2 25 3 \A8) 4 \i5f 5

-1

45

2

5
2

5

14
05 f

[] —— Summed signal
050 \es/ 1 \sf 2 \2sf 3 Y350 4 (45 4

-1
15

2

5

1,
1
2

Figure 1—The blue curve is a simulated forward wave. It is
reflected back on the right side of the graph with the same
amplitude and no phase shift (red curve). The forward and
reflected waves add up and provide the bottom green shape.

CIRCUIT CELLAR® * circuitcellar.com

15
1

s VAN AN AN ARV AR
R

15

ROV
AN

Figure 2—This is the same simulation as in
Figure 1, but with snapshots at different time
steps (in different colors). It's interesting that
standing waves appears on the bottom plot.
Here, there is a maximum node for each half
wavelength, with the first one on the right
(position of the reflector, as the reflector
induces no phase shift on the wave). The null
nodes are a quarter of a wave length away.

What's interesting—and can be easily
demonstrated if you love trigonometric
formulas—is that this resulting wave has
fixed maximum and minimum at given
points in space. These points, called
nodes, don't move over time. This is
why this phenomenon is called a “stand-
ing wave.” More specifically, each pair of
maximum (or minimum) nodes is sepa-
rated by half the wavelength. Their
exact positions and amplitudes are

; e‘ l'\ I

VR

Figure 4—If the reflected wave is smaller in
amplitude, there are still standing waves, but
their amplitudes are lower. For example, look at
the maximum points of the sine curves on the
lowest graph. The curve connecting these maxima
is still a sine wave.

circuitcellarcom <* CIRCUIT CELLAR®

dependent on the reflector’s characteris-
tics. Figure 2 shows a simulation of a
perfect reflector (i.e., the reflected wave
has the same amplitude and phase as
the forward wave). In that case, there is
a maximum node at the reflector posi-
tion, a null node a quarter of a wave-
length away, another maximum a quar-
ter of a wavelength away, and so forth.
Don’t be confused. If you put a probe
somewhere and measure the wave
amplitude over time you will always get
a sine signal. However, its amplitude will
be the highest if you are at a maximum
node and could be null if you put your
probe on a minimum node. I admit this
is a little strange. You have to accept
that there could be no signal at all at a
given point even if two waves are prop-
agating in both directions, but this is a
fact. If you are interested, you will find
animated plots and videos of rope-based
experiments online that may help you to
understand. (See the Resources section
at the end of this article.)

Now, what happens if the reflector is
shifting the signal’s phase by 1807 Figure 3
shows you the answer. You would get
the same behavior, but the position of
the maximums and nulls are shifted by
a quarter of the wavelength. In that
case, there is a null at the mirror posi-
tion, not a maximum, as in the previous
case. It's easy to remember. If the
reflector shifts the phase by 180°, then
the sum of the forward and reflected
waves is always null at the reflector
position. Lastly, Figure 4 shows what
happens if the reflected signal’s ampli-
tude is significantly smaller than the
forward wave. It's the same behavior,
but the minimums are not null and the
maximums are lower in amplitude.

EXPERIMENTAL PLATFORM
That's enough theory and simulations. I
wanted to use electrical signals to build an
easy-to-replicate standing-wave demon-
stration setup. Circuit Cellar readers are
more used to electrons than mechanical
waves. With the help of my colleague,
Yannick Avelino, I first built a 40-cm long,
50-Q microstrip transmission line. As I
have already devoted a full article on that
topic ("Microstrip Techniques,” Circuit Cel-
lar 223, 2009), I will just remind you this
type of microstrip line is simple to build.
You just need to etch a copper track on the
top of a PCB with a full ground plane on
the other face. The track’s width should be
calculated for the required impedance
depending on the PCB characteristics.
Here I used a 0.8-mm thick FR4 laminate,

Figure 3—The reflector adds a 180° phase shift
on the signal. The shapes are similar to Figure 2,
but the maximums and null nodes are shifted by
a quarter of a wavelength.

which required a 1.5-mm wide track for
50-Q impedance. Instead of using
chemistry, I simply used a milling
machine to etch this track and soldered
SMA connectors on both ends. Photo 1
shows the result, which was verified
using the Hewlett-Packard HP8510 vec-
tor network analyzer, which is also
shown in the photo.

Next, I needed an input signal. To
have measurable standing waves, 1 had
to use a signal with a frequency high
enough compared to the transmission
line’s length. After some experimenta-
tion, I settled on a 500-MHz frequency,
which corresponds to a wavelength of
L=c/f =3 x 108500 x 106= 60 cm in
the air. On a microstrip line, the wave-
length is smaller than in the air, with a
ratio of approximately 1.77 (the square
root of the effective dielectric constant of

Photo 1-—1I use this microstrip transmission line
for my experiments. The line is simply a copper
track on top of a plain copper ground plane. On
the top side, there are still two ground planes on
both sides, but they are significantly far from the
transmission line. On the back you can see the
HP8510 vector network analyzer used to check
the setup.

February 2013 - Issue 271

February 2013 - Issue 271

Photo 2—The assembled test probe slides on the test transmission line and
is kept in place with two grabbers, which interconnect the ground planes at
the same time. On the right, you can see the 50-Q test load connected to
the SMA plug.

the PCB substrate), providing an effective 33.8-cm wave-
length, which is smaller than the PCB’s size. I used one of our
lab RF generators to produce this 500-MHz signal. Since the
signal frequency’s accuracy is not critical for this experiment,
you can use any RF generator able to provide a 500-MHz sig-
nal with a reasonable output power (e.g., 10 mW). You can
build one too, but it will require hours of extra work.

I also needed a way to measure the signal amplitude. The
idea was to build a small slider that could be easily positioned
anywhere on the microstrip line. I wanted to use a simple diode
detector circuit to convert the RF signal amplitude into a DC
voltage that could then be evaluated with a standard multi-
meter. Photo 2 shows the prototype, which was built on another
small PCB. Admittedly, I spent more time than anticipated on
this circuit, simply because you can only achieve good results if
the measurement probe itself doesn’t disturb the signal you
want to measure, which is more easy to write than to design. I
ended up with the schematic shown in Figure 5. The signal is
grabbed on the line through a 100-Q SMT resistor, which must

Photo 3—Here is a close up of the test probe assembly. The detecting diode
is the small black part between the two ceramic disk capacitors. You can
also see the small white SMT 100-Q resistor that is just touching the trans-
mission line with the ceramic capacitor used as a spring. Soldering this SMT
resistor is a good exercise!

C1 D1
100 150 pF BAT 54
R2 R3

910 ICZ 8Kk2

C3

L.
I

18 pF

Figure 5—The test probe schematic is quite simple. The RF signal is
grabbed by a small 100-Q resistor (on the left) to avoid any extra load on
the line. A standard multimeter is used to rectify, filter, and measure it.

be in direct contact with the line to avoid any extra load on the
microstrip. I soldered this resistor on the end of a 150-pF
ceramic capacitor, which serves as contact spring (see Photo 3).
The signal is then centered to the ground level with a 910-Q
resistor, detected with a BAT54 Schottky diode (this model is
not supposed to work at such a high frequency), and filtered out
using a 18-pF ceramic capacitor paired with a larger 100-nF
standard capacitor. As usual, the smallest capacitor must be
soldered as closely as possible to the diode, and all the com-
ponents working at the RF frequency must be soldered as
closely as possible to each other. This probe PCB is maintained
on the transmission line PCB thanks to a pair of grabbers,
which connect both ground planes together. Be careful, the
diode detector is not calibrated at all, so the measured ampli-
tude is just a qualitative measurement. But, it is enough to
know if the wave is strong or not at a given point. The compo-
nents values are not critical, so feel free to experiment with
what you have on your shelf.

REFLECTORS

Lastly, I needed sample signal reflectors to generate stand-
ing waves on the line. This is an easy task. RF circuit theory
states that there is a reflected signal each time there isn't a
perfect impedance matching somewhere, and in particular,
between the line and the load on which it is connected. The
higher the mismatch, the higher the reflection. There are two
ways to create a perfect impedance mismatch: leaving an RF
line open or short circuiting it to ground. In both cases, maxi-
mum standing waves would be generated, but with a different
phase condition. A short circuit implies there is a null voltage
at the extremity of the line (and, by the way, a maximum cur-
rent, but that’s another story). Therefore, a null node on the
standing-wave pattern at the short-circuit position is expected.
Conversely, an open line implies a null current and a maximum
voltage at the end of the line. In that case, a maximum node
where the line is opened is expected.

For the experiment, an open line is easy to do, just leave
the output SMA connector unconnected. For the short circuit
you can either use a ready-made “short” reference plug or
use a male SMA and a very short short-circuiting wire to build
one yourself. A test could be made with a 50-Q reference
load. In that case, the line impedance is matched with the
load, so no reflection and therefore no standing waves are
expected.

MEASUREMENTS!

Now it’s time to check if the theory matches the experiment!
I successively connected a short, a 50-Q load and an open cir-
cuit to the output SMA connector, switched on the RF generator,
gently slid the probe on the line, and measured the signal
amplitude every 1 cm. Then I plotted the results on a graph.

CIRCUIT CELLAR® * circuitcellar.com

Feel the Love

Take 325 of f

T
:Mg- >

w“z.:r.

R 2d
. r“? 9./

Purchase GGGold i #Na

between now and *

the end of March

and save $25

- w’ﬁ o0 DEVELOPMEY oy

el
o, ‘,qcm‘"m l

il
hi

I
LS

For details and to purchase visit:

www.cc-webshop.com CIRCUIT CELLAR

February 2013 - Issue 271

Figure 6 shows the uncorrected figures.
Let's analyze it.

First there are, as expected, standing
waves. I measured regularly spaced
nulls and maximums on the signal volt-
age both with open and shorted termi-
nations. These nulls are spaced by
approximately 16 cm, which must cor-
respond to half a wavelength of the
500-MHz signal. This is a great first
result, as it enabled me to actually

me to introduce the notion of voltage
standing wave ratio (VSWR).

Measure the voltage of the maxi-
mum nodes of the standing wave pat-
tern, divide it by the voltage of the
minimum nodes, and you've got the
VSWR figure. This is, therefore, a fig-
ure representative of the load match-
ing quality, the closer to 1 the better.
So, you shouldn’t be surprised that
ham radio guys are speaking of their

===\ {50 chrj
= m\ jopen)
i {shon)

measure the light’s velocity on the
microstrip line. Let's do the math. The
measured wavelength is 32 cm (i.e., 2
x 16). Therefore, the signal’s velocity is
160,000,000 m/s (i.e., V = 500 MHz x
0.32 m). That’s 53% the speed of light
in free space (i.e., 3.108 m/s), which is
close to the expectation. (This factor was expected to be the
inverse of the square root of the effective dielectric constant of
the line, so 1/1.77 = 56%. We are close.)

Then look at the signals’ phase. The open-line test (plotted in
orange in Figure 6) shows a maximum close to 0 cm from the
end, as expected, and the short-circuited test (yellow) shows a
null nearly at the same position, as expected. More exactly, the
standing-wave node is a little to the right of the “0-cm” mark,
which is normal as the effective open or short circuit is at the
end of the SMA adapter, around 1 cm away from my rule’s ori-
gin. Once again, it's very close to the theory.

The most intriguing case is the 50-Q load test (shown in blue
on the graph). I expected a straight line (i.e., no standing
waves). However, if you look closely, you will see that the meas-
urement shows two things. First, the overall curve is moving
down from left to right (the minimums are, for example, lower
on the right than on the left). This means there is some power
leakage on the line, which isn't a surprise. The more surprising
fact is that there is a significant amount of standing wave, which
isn't supposed to be present with a matched load. This enabled
(REF 1.8 Units

b 200.0 mUnits~
54.725 0 S.4888 0

ETART
0.100000000 OHz

Photo 4—The 50-Q test load was measured on a HP8510C vector network
analyzer. On such a plot, a 50-Q perfect impedance is at the center. Here
the cursor position, at 500 MHz, shows that the measured impedance is not
exactly 50-Q, more precisely it is measured at 54.7 + 9.4j Q. Such a com-
plex impedance includes both a magnitude and a phase measurement.

Figure 6—This is the actual result of the standing
waves measurement on my experimental setup. The
yellow plot was made with a short circuit as a reflector.
As expected, there is a null close to the reflector posi-
tion (on the right of the plot, 0 cm). Similarly, the
orange curve was made with an open circuit. The blue
curve was made with a 50-Q load.

antennas’ VSWR all the time. If the
VSWR isn't close enough to 1, the
antenna is not well adapted to the 50-Q
line and some power is lost. You can
find the formulas that link VSWR with
the other characteristics of the imped-
ance matching (e.g., impedance and
reflection coefficient, return loss, etc.) online.

In my experiment, the measured VSWR with the 50-Q con-
nected on the line is about 1.42 (i.e., 14 mV/9.8 mV). This is far
higher than what you should get with a proper 50-Q load. I was
wondering what was going on and decided to double check the
50 Q I was using. To be honest, this load was in my lab for years.
It was a low-quality BNC load probably from an old 10baseT
Ethernet network. As we are lucky enough to have some nice
test equipment in the lab, I switched on our HP8510 vector net-
work analyzer, connected the 50-Q load on its test port, and, I
got the results shown in Photo 4. The load is effectively 50 Q at
0 Hz, but its measured impedance at 500 MHz is 54.7 + 9.4j Q.
That's 10% off the expected 50-Q impedance, which is a signif-
icant deviation. The analyzer was also able to calculate the cor-
responding VSWR. So, after finding the correct button on the
analyzer, I got the results shown in Photo 5.

My reference load has a measured VSWR of 1.22. This is not
exactly the 1.42 I got on my VSWR experiment, but at least that
explains a significant part of the error. My 50-Q load was not
exactly a 50-Q load. The remaining discrepancy is probably
linked to both the low-quality SMA-to-BNC adapters I've used
and to measurement errors.

MARKER & i

ppint -1]

START
0.i00000000 GHz

STOP
1.000000000 GHz

Photo 5—The test load's corresponding VSWR is plotted against frequency.
At 500 MHz, the measured VSWR is 1.22.

CIRCUIT CELLAR® < circuitcellar.com

WRAPPING UP

Here we are. I will be honest: This was
the first time I actually measured standing
waves, even if I have to play with VSWR
figures quite often. Moreover, I have not
invented anything in this article. The
methods 1 showed you were the only
methods an RF engineer could use to eval-
uate impedance matching prior to the
development of the first vector network
analyzers. If you search eBay, you can still
find some so-called “slotted lines,” which
are the equivalent of my microstrip line
but with far greater precision measure-
ment capabilities. This equipment, like the
well-known Hewlett-Packard HP 805A slot-
ted line and the accompanying HP 415A
standing-wave indicator, was developed in
the early 1950s. You can learn a lot by
looking at their characteristics (see the
Resources section).

Anyway, I was pleased to see my low-
cost experiment was enough to get
results nicely fitting with the theory.
Standing waves are fun and they are
easy to play with. I hope you will try it
yourself. There is no better way to bring
a subject out of you own darker side than
by practicing! &

Robert Lacoste lives near Paris, France.
He has 24 years of experience working
on embedded systems, analog designs,
and wireless telecommunications. He
has won prizes in more than 15 interna-
tional design contests. In 2003, Robert
started a consulting company, ALCIOM,
to share his passion for innovative
mixed-signal designs. You can reach
him at rlacoste@alciom.com. Don't for-
get to write "Darker Side” in the subject
line to bypass his spam filters.

PROJECT FILES

To download the code, go to
ftp://ftp.circuitcellar.com/
pub/Circuit_Cellar/2013/271.

RESOURCES

R. Lacoste, “Microstrip Techniques,”
Circuit Cellar 223, 20009.

LibreOffice, www.libreoffice.org.
The Memory Project, “Microwave
Measurement Accessories: Impedance
Measurement,” www.hpmemory.org/
wa_pages/wall_a_page_06.htm.

Microwaves101.com, “Slotted Line
Measurements,” 2009,

circuitcellar.com <* CIRCUIT CELLAR®

www.microwaves101.com/encyclopedia/slottedline.cfm.

MindBites, Inc., “Physics in Action: Standing Waves on a Rope,” 2009,
www.mindbites.com/lesson/4603-physics-in-action-standing-waves-on-a-rope.

D. Russell, “Acoustics and Vibration Animations: Reflection from an Impedance
Discontinuity and the Standing Wave Ratio,” Graduate Program in Acoustics, The
Pennsylvania State University, 2011, www.acs.psu.edu/drussell/Demos/SWR/
SWR.html.

Wikipedia, “Standing Wave,” http://en.wikipedia.org/wiki/Standing_wave.

SOURCE

HP8510 Vector network analyzer
Hewlett-Packard, available through distributors such as eBay (www.ebay.com)

DOWNLOAD our free CAD software

DESIGN your two or four layer PC board

SEND us your design with just a click

RECEIVE top quality boards in just days

expresspcb.com

February 2013 - Issue 271

4]
©

—
N
oV}
(]
3
9]
1)
—
I
2]
—
o
o
>
i
m©
=]
st
e}
[0]
'8

FROM THE ARCHIVES

In celebration of Circuit Cellar’s 25 year, we're running an article from the archives each month that exemplifies something
special about this magazine, its contributors, and its readers. We hope you’ll enjoy reading (or perhaps rereading) these

innovative projects as much as we did preparing them. This month, we feature a 2003 article about a microcontroller-based
device that uses a PCMCIA card to interact with wireless networks.

The WiFi SniFi

Sniffing In and Out of Wireless Networks

Are you having trouble locating 802.11b wireless networks? Don't worry.
Roy has the perfect solution. The WiFi SniFi is a compact, easy-to-build
device that can “sniff” out wireless networks and display the appropriate

packet information.

he WiFi SniFi, which I pronounce

“wiffy sniffy” for the fun of it,
sniffs out 802.11b wireless networks and
displays captured packet information
(see Photo 1). This little device can
remain quiet on the network or associate
with an access point and act as a net-
work node. In Monitor mode, the WiFi
SniFi can listen to a specific channel or
scan all of the channels.

The big news is that the WiFi SniFi per-
forms these functions without a high-
powered microprocessor. In fact, one of
its main advantages is that it generates a
large amount of functionality from its 8-
bit, 5-MHz microcontroller. Wireless local
area networks (WLANs) operate at much
higher speeds than the microcontroller,
but the WiFi SniFi manages to nab the
all-important management frames. It
even grabs some of the data frames.

Even if you don’t want to nab 'n’ grab
WLAN frames, you might find some use-
ful hardware and software nuggets in the
WiFi SniFi that apply to other types of
microcontroller designs. I created the
WiFi SniFi as part of the 2002 Esprit de

Photo 1—The WiFi SniFi uses a PCMCIA card to
interact with wireless networks, a small LCD to
display packet contents, and an old mouse scroll
wheel to get user inputs. An 8-bit, 5-MHz micro-
controller runs the entire thing.

KORE contest, which was sponsored by
NEC Electronics America, so the device
is a demo that shows how to leverage
microcontroller resources to achieve
surprising results.

If you savor the kind of minimalist
design techniques that squeeze the
most out of system resources, you
might appreciate this design’s interfaces
with its input switches, PCMCIA card,
and serial EEPROM. You can easily reuse
the software for the PCMCIA interface in
applications that don’t have a suitable
PCMCIA interface in hardware, even if
you'’re working with something other
than a wireless LAN card.

The design’s user interface may
require some adaptation for other appli-
cations, but it could be useful in a wide
range of designs. The user interface
consists of a scroll wheel taken from a
mouse and a single push button. Roll
the wheel to scroll through menu items
and press it to select items. Use a sep-
arate push button to clear entries. The
interface is simple, compact, and easy
to use.

CIRCUIT CELLAR® = circuitcellar.com

PCMCIA
Card
16-bit Data
6-bit Address
9-bit Control
Input
switches -
(wheel, @
butt NE i i
uttons) Electr(glics 1-bit Clock \| Serial
PD78F9418 1-bit Data /|EEPROM
Voltage monitor Analog in H
(resistor network)
8-bit Data
3-bit Control
LCD

Figure 1—The WiFi SniFi consists of few components other than the 8-bit
microcontroller, which implements the PCMCIA interface in software. The
microcontroller includes a hardware LCD controller/driver. Some of the LCD
1/0s are shared with other devices.

WHAT'S INSIDE?

The WiFi SniFi couldn't be simpler (see Figure 1). Most of the
necessary resources are inside the NEC Electronics yPD78F9418
microcontroller. The only major external components include a

4 x 20 LCD, a 128-Kb EEPROM that's used for saving captured
WLAN frames and device configuration data, the mouse wheel,
and an Intersil Prism 2-based PCMCIA WLAN card. These are on
a board I built that attaches to an NEC KORE9418 development
board (see Figure 2).

You can deliver power to the WiFi SniFi with batteries, an AC
adapter, or a car cigarette lighter adapter. Either of the latter
two power sources will charge the batteries. The voltage moni-
tor indicated in Figure 1 is used for monitoring the battery’s
charge state.

The WLAN card acts as a basic 802.11b node. I designed the
WiFi SniFi without formal documentation for this card, but you
can get information about it from the various open-source
device drivers available for it. Refer to the Resources section of
this article for a few useful links.

I had a difficult time finding detailed PCMCIA information on
the 'Net, but I obtained a lot of useful information from F.
Imdad-Haque’s book, Inside PC Card: CardBus and PCMCIA
Design. In addition, you can download the 802.11b specification
from IEEE (www.ieee.org).

Important aspects of the microcontroller include its on-board
32-KB flash memory and 512-byte RAM. The application code
resides in the on-board flash memory. Most significantly for this
design, the microcontroller has 43 I/0O pins, including multiple

D[0..15]
4 Al0.5)
3.3V
coo T zlopel @
01u | Alo|albf <
+33V | | | | |
J2
Re <R7 {R8 = |fs 6668060660 Processor
10k 1ok 0k T°°°°°°TTTPWSZ1‘40
$— CLEAR-SW = E g 32 o
WHEEL1-SW N
oo Y o] WHEELO-SW
0.1u MAX3222
18, SHon nH
= g 10 — Processor
i R2IN R20UT |- — - pins 41-60
J5 R1IN R10OUT f J3 J1
o s " "HWAIT —F0 o
o LCDﬁUPPLVE T20UT T2IN +33V *IREQ —-0 O
o | T10UT TN 0 o
erial 0 O
= Mhvee co-| 8 seleeTaw —ool—sel L\,
16 5 - i h
—=GND for 28 —I —0 O
C18]/0.1u 813 0 O “REG
; 71y o 14 : 0 O
I \ 3 5 -0 O—— +3.3V
Vet Ci+ —‘ |: J Processor
ISH c16 pins 1-20
1o 0.1u C14
= — 0du
¥4 L =
*CE1
L1,
! 0006666000P_rocessor
9009?99000 pins 61-80
1
oo || LT 1L
<5 fa{fa]la)

*RESET

Figure 2—The WiFi SniFi board is designed to mate with the four 20-pin headers that the KORE development board provides. The MAX3222 is used for
debugging serial output and providing a negative voltage source to drive the LCD.

circuitcellar.com * CIRCUIT CELLAR®

February 2013 - Issue 271

[=)]

—
~
o~
(]
=
"]
wn
—
I
™
—
(@]
o
>
-
©
=
.
el
(0]
[

Figure 3—The linear regulator keeps the power design simple. The Clear switch is a separate switch,
while the other three are part of the mouse scroll wheel.

A/D input channels. I used one of the A/D
channels to monitor battery voltage. If
you are used to working with micro-
processors, the microcontroller presents
a somewhat different interface task
because it has no external data or
address buses. Most of the I/Os on this
particular microcontroller are general-
purpose ports, which means that they
adapt to different purposes under soft-
ware control.

WIFI SNIFI CAPABILITIES

To understand what the WiFi SniFi
does, you need to know a few facts about
802.11b-based WLANs. These wireless
networks operate in the 2.4-GHz fre-
quency range and offer a maximum
physical-layer signaling rate of 11 Mbps.
Although real-world networks achieve
only 6 or 7 Mbps of throughput, the data
rates are rather high for a 5-MHz system
to handle. In fact, it is interesting to see
how well the device keeps up, which
probably has a lot to do with the large
amount of buffering the wireless card per-
forms. With the ability to buffer several
dozen packets in its internal memory, the
card greatly eases the timing constraints
of interfacing to the microcontroller.

The 802.11b networks in the U.S. can
use 11 channels. All but three channels
overlap and interfere with one another,

so only three WLANs can operate unhin-
dered in one area.

A WLAN can operate in either Infra-
structure mode (BSS mode, where the
network is controlled by an access point,
or AP) or Ad Hoc mode (IBSS mode,
where there is no access point). The serv-
ice set identifier (SSID) is a string that
identifies a WLAN. Stations only associate
with an AP (or another station in Ad Hoc
mode) that has the same SSID. When
you turn on a station such as a notebook
computer with a wireless card, the station
scans all the channels checking for a bea-
con frame that has the station’s SSID in
it. This beacon frame identifies the chan-
nel and the address of the AP that the sta-
tion is seeking. If the station finds no such

Down

beacon frame, it cannot join any net-
works, so no wireless communication is
possible.

The WiFi SniFi has two basic modes. It
can find and monitor a wireless network
by capturing management and data
frames. Or it can associate with a net-
work, display frames, and respond to
pings and address resolution protocols,
or ARPs, which are named for mapping
an IP address to a physical machine
address.

The WiFi SniFi won't give you Internet
access, but it does enable you to poke
about the landscape to find the WLANSs.
You can do so by placing the WiFi SniFi in
Monitor mode and listening for frames.
When frames come in, the WiFi SniFi dis-
plays them on the LCD and stores them
in nonvolatile memory. You can configure
the WiFi SniFi to listen on a specified
channel or scan all of the channels by
selecting channel zero via the user inter-
face. Because of the overlapping chan-
nels, frames are often received while lis-
tening on a channel other than the one
they were transmitted on. Most frames
do not indicate which channel they
where transmitted on, but management
frames such as beacons include this
information so the stations know which
channel to use.

You can also control the types of
frames that the system displays and
saves. Because data frames tend to be
fairly large, the WiFi SniFi can display
only a portion of their content on the 4 x
20 LCD. Similarly, the EEPROM stores
only part of each data frame. The type of

Switch 0 —| |

Switch 1

Detent

Detent

Detent

Figure 4—As you rotate the scroll wheel, two switches open and close to generate the waveforms.
Detents are stopping points on the wheel that you can feel as you rotate it, and both switches are in
the high or low state at each detent. If you analyze which waveform goes high or low first, you can tell
which way the wheel is rotating. By detecting wheel-up and wheel-down events, software can iterate

through menu items and packet listings on the LCD.

CIRCUIT CELLAR® < circuitcellar.com

FROM THE ARCHIVES

information displayed varies based on the
type of frame, because not all of the
fields are present in every frame type.
The WiFi SniFi is best adapted for cap-
turing management frames, which are
generally small. The system can save and
display most of the information in these
frames. Management frames include bea-
cons, probe requests/responses, associa-
tion requests/responses, reassociation
requests/responses, disassociation, auth-
entication, and deauthentication. Man-
agement frames are often the most inter-
esting from a network-troubleshooting
point of view because they control the
process of joining and leaving networks.
When it's monitoring, the WiFi SniFi
displays the current saved frame number
in the upper right corner of the LCD. The
frame number increments until the EEP-
ROM is full (containing 255 saved
frames). Then, the WiFi SniFi continues
to display frames without saving them.
Use the Clear Captured Frames configu-
ration menu option to clear the EEPROM.
You can set the WiFi SniFi to capture or

ignore a specific type of frame, including
contention-free control frames (CF-Ack,
CF-Poll, CF-Ack+CF-Poll, CF-End, CF-
End+CF-Ack).

To join a network with the WiFi SniFi,
you must configure two fields in the con-
figuration menu: the SSID, which is a
string that identifies stations that are log-
ically on the same network, and the IP
address. Then, you can select the net-
work node mode in the configuration
menu.

If the WiFi SniFi successfully associates
with the AP, the “link status change: con-
nected” message will appear on the LCD.
At that point, the WiFi SniFi is ready to
respond to ARPs and pings. The system
displays but does not capture the
received frames. Also, note that the WiFi
SniFi does not support the WEP encryp-
tion that is increasingly used to secure
802.11b WLANSs.

The WiFi SniFi does not need a net-
mask to associate with a WLAN because
the device does not initiate network traf-
fic. The WiFi SniFi has no concept of a

Note: Actions performed on transitions are in parentheses. Names match source code.

Waiting for Detent state

o0
bit1 2 Loito

Initial
state

Switch 0 == Switch 1
detent bit

Detent
Found
state

Moving state
Waiting for move to complete

Figure 5—The state diagram describes the way software handles inputs from the scroll wheel. As soon
as the software state machine detects a valid wheel-up or wheel-down event, the software looks for

the next event.

circuitcellar.com * CIRCUIT CELLAR®

HUMANDATA.
FPGA /CPLD Boards

from JAPAN
SAVING COST-TIME vith readily available FPGA boards

= Basic and simple features, single power supply operation
= Same board size and connector layout - ACM/XCM

= All stocked items are ready to be shipped immediately
= Over 100 varieties of FPGA/CPLD boards are available
= Free download technical documents before purchasing

(PLCC68 series)

= FPGA Module IC socket mountable
= 3.3V single power supply = Very small size (25.3 x 25.3 [mm])

XP68-03 Spartan-6 PLCC68 FPGA Module

Spartan-6
XC6SLX45-2CSG324C
16Mbit Configuration Device
Two User LEDs

One User Switch(Slide)

RoHS compliant @

AP68-04 Cyclone I PLCC68 FPGA Module

(Cyclonell
EP3C25U256C8N

16Mbit Configuration Device
Two User LEDs

One User Switch(Slide)

RoHS compliant é@

| ALTERA FPGA Board |

Cyclone IV GX F484 FPGA board
ACM-024 series

(CycloneIVGX) (_ DDR2_) (__SIF40)

EP4CGX50CF23C8N
EP4CGX75CF23C8N
EP4CGX110CF23C8N
EP4CGX150CF23C7N
Credit card size (86 x 54 mm)

RoHS compliant

Cyclone IV GX F484 FPGA board
ACM-108 series
(CycloneIVGX) (DDR2)

EP4CGX50CF23C8N
EP4CGX110CF23C8N
EP4CGX150CF23C7N
Compact size (43 x 54 mm)

RoHS compliant @

[XILINX FPGA Board |

Virtex-5 LXT FFG665 FPGA board
XCM-017 series

((Wirtex-5) (SDRAM)
XC5VLX30T-1FFG665C
XC5VLX50T-1FFG665C
Credit card size (86 x 54 mm)

RoHS compliant

Spartan-6 LXT FGG484 FPGA board
XCM-111 series
(Spartan-6)

XC6SLX45T-2FGG484C
XC6SLX75T-2FGG484C ¥
XC6SLX100T-2FGG484C
XC6SLX150T-2FGG484C
Compact size (43 x 54 mm)

RoHS compliant

%) = One for general power (3,3V 3A max)

and the Two variable outputs for
- Vecio(0.8V to 3.3, 3A max)
" = For ACM/XCM-2 series FPGA boards
= Power Switch and LED
= Power input:DC5V/2.1[mm] Jack/
Terminal Block (option)
= Board size :156x184 [mm)]
= 4 Layers PCB, Thru-hole

emai: s2@hdl.co.jp

Fax:81-72-620-2003

February 2013 - Issue 271

—
N
oV}
(]
3
9]
1)
—
I
2]
—
o
o
>
i
m©
=]
st
e}
[0]
'8

FROM THE ARCHIVES

local versus nonlocal IP address. When a
frame is received, the WiFi SniFi
responds to the source MAC and source
IP addresses within that frame.

USING THE WIFI SNIFI

Before getting into how some of the
WiFi SniFi's features work, let's look at
how you can use them. The WiFi SniFi
has a simple interface consisting of a
Clear button and the ex-mouse scroll
wheel. Pressing the scroll wheel acti-
vates a switch that is used as a Select
button.

If you press the Select button in normal
operation, you'll enter the WiFi SniFi con-
figuration menu. Then, you can roll the
wheel up and down to cycle through the
configuration menu selections. The top
line of the LCD displays the current con-
figuration item, and the bottom three
lines display a short help message. Press-
ing the scroll wheel selects the currently
displayed menu option. When you select
an item, you can edit its value.

The way you edit menu items depends
on the context. Sometimes you select a
value from several fixed choices. Other
times you need to enter a value, such as
the SSID or IP address, in which case,
you must change the value of a charac-
ter by rolling the wheel up or down.

Pressing the Select button moves the
cursor one character to the right, and the
Clear button moves left. If you press the
Clear button when the cursor is all the
way to the left, you'll cancel the editing
of the field. Pressing the Select button
while in the right-most position accepts
the displayed value. To stop SSID edit-
ing, scroll to a space character and press
the Select button.

During normal network node or moni-
tor operation, the Clear button clears the
LCD, leaving it blank until the WiFi SniFi
has new information to display. When you
browse captured frames, the wheel
selects the frame to be displayed. Press-
ing the Select button toggles between
two screens of frame information,
although some frames have only one
screen.

Because the LCD is small, the screen
displays frame information in a compact

Listing 1—The code that implements the state machine shown in Figure 5 uses polling to obtain
the condition of the scroll wheel switches. The code uses an interrupt for the WiFi SniFi's Select
button. It’s the only interrupt in this design.

//Get button (and switch) state, debounce inputs
bs = pollButtons(); //bs . WHEELO bs.WHEEL1 are the
wheel switch inputs
//State machine for scroll wheel (four possible states)
if (GS_WHEEL_STATE_1_BIT)
{
if (GS_WHEEL_STATE_O_BIT)
{
//State 11: Detent Found, waiting for move, which is indicated by
the two wheel switches having different values
if (bs.WHEEL1 != bs.WHEELO)

{
GS_WHEEL_STATE_O_BIT = 0; //Go to state 10
GS_WHEEL_DIR_BIT = bs.WHEEL1; //Save direction
}
}
else
{

//State 10: Moving and waiting for move to complete. Move is complete
when both wheel switches are the same value (i.e., you have reached
another detent), and this value is different from the previous detent
value. If it’s equal to the previous detent, you’ve either missed some
events or the user only slightly moved the wheel, and let it return to
the original detent.

if (bs.WHEEL1 == bs.WHEELO)

{
//Either go to Waiting for Detent (if you detect a move) or waiting
for a move (if you’re back at the original detent)
GS_WHEEL_STATE_O0_BIT = 1;
if (! (bs.WHEEL1 == GS_WHEEL_DETENT_BIT))

//You’ve moved, so take action, and set the next state to Waiting
for Detent. Even though you’re at a detent, you will Tikely have work
to do, which will delay your next poll of the switch states. If the
wheel is being scrolled quickly, you may missmany transitions.
GS_WHEEL_STATE_1_BIT = 0; //Go to state 01
//Move complete. Action!
if (GS_WHEEL_DETENT_BIT == GS_WHEEL_DIR_BIT)
return(BA_wheelUp); //Wheel up
else
return(BA_wheelDown); //Wheel down, or else
go to state 11

}
else

if (GS_WHEEL_STATE_O_BIT)

{
//State 01: Waiting for Detent. When wheel is in a detent
position, both wheel switches have the same value.
if (bs.WHEEL1 == bs.WHEELO)
{

GS_WHEEL_STATE_1_BIT = 1;
save detent value
GS_WHEEL_DETENT_BIT = bs.WHEEL1;

//Go to state 11 and

}
else

//State 00: initial state of state machine. This state is not nec-
essary, but it’s implemented so that all possible state values are
handled properly. It’s used at startup because the global state vari-
able is initialized to zero, and this way you don't have to initialize
it to a special value. Go to state 01 Waiting for Detent.

GS_WHEEL_STATE_O_BIT = 1;
}

return(BA_noAction); //If you make it here, nothing has happened.

CIRCUIT CELLAR® < circuitcellar.com

manner, using abbreviations for many
fields. You may download a list of these
abbreviations and other terms from the
Circuit Cellar FTP site. They may prove
useful for understanding 802.11b-type
networks.

In Monitor mode, the top line of the
LCD displays the same information for
all frame types: the type of frame, the
channel that the card was configured for
when the frame was received, the signal
strength, and the frame number in the
captured frame buffer. As you can see in
Photo 1, I labeled the fields above the
LCD. The information displayed in the
remaining three lines of the LCD
depends on the type of frame that's
involved. If you configure the WiFi SniFi
to scan channels, it displays the channel
it is listening to each time the channel
changes.

In network node mode, the LCD dis-
plays ARP and ping frames as they are
received. The WiFi SniFi does not save
these frames to the captured frame

buffer. When the status of the wireless
connection changes (i.e., when the WLAN
card associates or disassociates with an
AP), the WiFi SniFi displays a message
indicating the new status.

THE MOUSE WHEEL

The mouse scroll wheel handles almost
all of the WiFi SniFi's input needs. Only
one other switch is needed to act as the
clear input. The wheel is also extremely
easy to design in.

Rotating the wheel opens and closes
two switches (see Figure 3). The wheel
has small detents at regular intervals that
you can feel as you rotate the wheel.
Both switches are in the same state at
each detent (both open or both closed).
In this implementation, I tied one input of
each switch low. I connected the other
switch input to the microcontroller input
and pulled it high with a resistor. As a
result, the I/O line is high when the
switch is open and low when the switch is
closed.

Figure 6—The PCMCIA interface connects directly to the pPD78F9418’s I/O pins. The data bus lines
are used for both the PCMCIA interface and the LCD, which works because they both have separate

enable signals.

circuitcellar.com < CIRCUIT CELLAR®

Access USB Devices
from your

Embedded Systems

USB Embedded Hosts

The Developer’s Guide
Jan Axelson
$29.95 LVR.COM
From the author of USB Complete

PIC-SERVO

MOTION CONTROL

MOTION CONTROLLERS FOR
BRUSH, BRUSHLESS AND
STEPPER MOTORS.

« controller chips
¢ controller boards

wWww.picservo.com
JEFFREY KERR, LLC

Conne’E't_y_Wui_th“j_
Design Engineers-

.From Around Thy

Reserve advertising
space in Circuit
Cellar and CC
News Notes today!

Strategic Media Marketing
978.281.7708
peter@smmarketing.us
www.smmarketing.us

February 2013 - Issue 271

—
N
oV}
(]
3
9]
1)
—
I
2]
—
o
o
>
i
m©
=]
st
e}
[0]
'8

The switches open and close at different wheel
positions; therefore, if you rotate the wheel at a con-
stant speed, the switches produce the waveforms
shown in Figure 4. These out-of-phase waveforms
allow you to tell which way the wheel is rotating.
From the detent marked “Up,” for instance, you'l
know the wheel is rotating upwards if switch 0 goes
high before switch 1.

Figure 5 describes the way I dealt with the wheel
states and transitions. Note that the 2-bit values for
each state keep track of whether the state machine
has found a detent or is waiting for one; these val-
ues do not reflect the values of the wheel switches.

Aside from the initial state, the state machine
includes three operating states. The first state,
Detent Found, involves waiting for a move (11).
When you enter this state, you save the value of the
switches, so you can tell whether or not a complete
move has occurred. The value also helps detect
missed transitions. After exiting the state, save one
of the switch values so you know which way the
wheel is moving.

The second state, Moving, entails waiting for a
move to end (10). A move is complete when you
reach another detent. If you return to the same
detent, you might have only rocked the wheel slight-
ly, or you could have missed several transitions. If
you reach another detent and a move is complete,
return the correct action code and transition to the
third state, Waiting for Detent. Even though you
reach a detent, the calling code may do something
as a result of returning an action code. So, to be on
the safe side, look for a new detent when you are
called again.

The Waiting for Detent state involves waiting for
both switches to have the same value. When they
do, transition to the Detent Found state. Even if you
find a detent when you leave a state (10), you need
to wait for another detent because a significant
amount of time may have passed since you left the
previous state. Finally, note that the initial state (00)

Listing 2—A direct interface between an 8-bit microcontroller and a PCMCIA card is a
rare thing, especially when the interface does not use any PCMCIA byte operations.
The code shown here implements the entire interface using the microcontroller’s gen-
eral-purpose 1/0s.

//Perform a 16-bit read of I/0 space @param addr address to
read from @return value read from card
__callt norec unsigned int ioRead(unsigned char addr)
{
unsigned int temp;
//Configure KO data port to Input mode
DATA_H_PORT_MODE = INPUT_PORT;
DATA_L_PORT_MODE = INPUT_PORT;
//Set up address
ADDR_O_3_PORT addr;
ADDR_4_5_PORT (ADDR_4_5_PORT & ~ADDR_4_5_PORT_MASK) |
((addr>>4) & ADDR_4_5_PORT_MASK);
//Move these to one register. REG- could be an OR of CEIl-
and CE2-, as REG is Tlow during both I/0 cycles and attribute
memory cycles. Can REG- be tied Tow? Reg, ce* can be set Tow
at the same time the address is presented.
hreg, cel, ce2 low #if 0
//CE1- and CE2- signals are always low,
16-bit accesses
CE_1_PORT_BIT
CE_2_PORT_BIT
#endif
REG_PORT_BIT = 0;

so you only perform

0;

//REG- may also be able to
be tied Tow, not checked
//Set 10 read Tow.

IORD_PORT_BIT = 0;

#ifndef PCMCIA_SIM
while (!HWAIT_PORT_BIT);
#Helse
NOP();
NOP();
NOP();

//Wait for hwait- high

#endif

//Read data
temp = DATA_H_PORT;
temp = temp << 8;
temp |= DATA_L_PORT;
TORD_PORT_BIT = 1;

//reg/cel/ce?2 high

#if 0
CE_1_PORT_BIT
CE_2_PORT_BIT

#endif
REG_PORT_BIT = 1;
return(temp);

1;

PCMCIA INTERFACE

allows the state machine to operate properly with the state
variable initialized to zero.

The state machine tracks changes in a way that includes
error checking. The machine waits for a detent after detecting
a move to make sure the move ended. After a move, if the
wheel ends up back in its previous state, the state machine
returns no action. If the move generates a different value, the
machine returns a wheel-up or wheel-down event so software
can appropriately iterate through the menu items.

Software polls the wheel switches to detect changes, and
the polling must occur often to keep up with rapid wheel
movements. The wheel’s Select switch activates an interrupt.
Listing 1 shows the code associated with the scroll wheel.

The microcontroller in the WiFi SniFi interfaces to the WLAN
PCMCIA card via the microcontroller's general-purpose I/0s
(see Figure 6). The same is true for the 12C interface to the
serial EEPROM. Therefore, I implemented these interfaces in
software. Listing 2 shows the code for the PCMCIA interface.
The code is suitable for reuse in any application that involves a
PCMCIA card.

You may download a list of the signals in the PCMCIA inter-
face from the Circuit Cellar FTP site. The PCMCIA interface is
asynchronous, so the microcontroller works well as the timing
master for the I/0 bus. After looking at the PCMCIA timing dia-
grams, Linitially thought that I wouldn’t need delays in the read

CIRCUIT CELLAR® < circuitcellar.com

and write routines, but I found it necessary to poll the *HWAIT
line. The polling loop probably exits after the first time the
*HWAIT signal is polled, because putting a few NOPs in place of
the polling loop also worked reliably.

To put the card into I/O mode, you need to set the COR reg-
ister appropriately, because all PCMCIA cards power up by
default in Memory Only mode. Because I had hard-coded the
COR register address, I did not need to read the information
from the attribute memory to determine its location. To put the
card in I/0 mode, however, I found that I had to read the COR
register before writing it. As a result, the OE signal had to be
connected and used for the attribute memory read operation.

I also discovered during the course of development that I did
not need to change the signals (*CE1 and *CE2) that control
whether a bus access is for the high byte, low byte, or both. I can
tie the signals low because I am always performing 16-bit access-
es. Even though attribute memory is only 8 bits wide, 16-bit
accesses ignore the upper 8 bits.

Implementing an 8-bit PCMCIA interface would have reduced
signal count only minimally and would have complicated the
development. The WLAN card is documented to support 8-bit
interfacing, but I could not find information on implementing
the 8-bit option. Many of the card’s internal buffers use autoin-
crementing of 16-bit addresses, so 8-bit operations on the reg-
isters would raise special cases. Implementing an 8-bit interface
also requires the use of *CE1, *CE2, and AQ, which is always
zero because all of the accesses are 16 bits. Thus, the total
interface width would only decrease by 5 bits.

Although the WLAN card decodes 10 address lines, six suffice
for accessing all of the addresses required to operate the card,
with the exception of the COR register in attribute memory.
Because the register access is the only operation that needs the
top four address bits, I tied the lines to the values required to
access the COR register. Even though I connected the A0 line to
the microcontroller, the connection is unnecessary because the
16-bit-only accesses make all of the addresses even.

If you want to support generic PCMCIA cards, you'll need
more address lines to parse the card information structure
(CIS) in attribute memory so you can determine the card capa-
bilities and the COR register location. For the WiFi SniFi, I
determined the COR register address in the Linux development
environment and hard-coded the address in the WiFi SniFi
implementation.

The PCMCIA interface’s high pin count did not pose a big
problem, because I reused most of the signals for interfacing to
other peripherals. For instance, 10 of the 11 bits in the LCD
interface are shared with the PCMCIA data bus. Polling the PCM-
CIA card eases the resource sharing. You could still share inter-
face pins in an interrupt-driven design, but you would have to
handle the sharing with greater care.

The WiFi SniFi uses only one interrupt line, and it's for the
Select button. I wanted the button to be responsive to user
inputs without continual high-frequency polling. That leaves the
main loop free to continuously poll the WLAN card, and it does

circuitcellar.com * CIRCUIT CELLAR®

so at a high enough frequency to keep up fairly well with the
packets.

The other switch inputs—the wheel and Clear—are polled fast
enough to be responsive after the WiFi SniFi is in Menu mode.
Therefore, they do not need to be interrupt-based.

EXPANSION POSSIBILITIES

Every design leaves you wishing you could do more. For the
WiFi SniFi, it would be nice to include a simple stateless TCP
Internet server for downloading captured frames to a PC. Addi-
tionally, you could use the microcontroller’s serial port for inter-
facing to a GPS receiver, so the WiFi SniFi could automatically
record the location of wireless networks.

The WiFi SniFi's power management could be improved with
a switching regulator and microcontroller-managed power sup-
ply for the PCMCIA card. (The design’s linear regulator is sim-
ple but inefficient.) The PCMCIA card is by far the system’s
largest power drain, so turning off the card while browsing cap-
tured frames would greatly improve battery life.

In a similar vein, the WiFi SniFi could use a more sophisticat-
ed charging circuit. The microcontroller’s analog input could
monitor battery temperature with a thermistor (along with the
voltage monitoring currently implemented) to enable faster
charging.

In addition to specific WiFi SniFi improvements, the device’s
core functionality could be developed into a platform that
allows for the addition of wireless networking to a variety of
microcontroller-based designs. As the WiFi SniFi project
proves, you can go wireless with a surprisingly small amount
of hardware. &l

Roy Franz earned a B.S. in Computer Science from the Uni-
versity of California, Davis. He’s been developing software for
embedded systems for more than 10 years. His technical
interests include low-level code that interfaces with hardware
as well as systems that interact with their environment. When
time permits, Roy enjoys hiking and rollerblading. You may
contact him at rfranz@beartreedesign.com.

PROJECT FILES

To download the code and additional files, go to ftp.
circuitcellar.com/pub/Circuit_Cellar/2003/157.

RESOURCES
F. Imdad-Haque, Inside PC Card: CardBus and PCMCIA
Design, Butterworth-Heinemann, Newton, MA, 1996.

Host AP driver information hostap.epitest.fi.

SOURCES
PRISM 2 WLAN Card
Intersil Corp. | www.intersil.com

HPD78F9418 Microcontroller
NEC USA, Inc. | www.necus.com

February 2013 - Issue 271

[2)]
N

February 2013 - Issue 271

=)}
0

IROM THE BENCH

by Jeff Bachiochi (USA)

QR Coding for Engineers

Quick response (QR) codes are 2-D matrix barcodes with fast readability and
large storage capacities. This article examines QR formats and describes how
to implement a Windows PC program that formats your data into QR code

symbols. Options such as error correction, masking, and other modifications

are also discussed.

uring the 1970s, the grocery industry’s
- trade association was looking for a way
for machines to read their newly defined numeric
product identification data. IBM engineer George
J. Laurer invented the 11-digit coding system
(with an additional check digit) used for the first
Universal Product Code (UPC) codes, UPC-A (see
Figure 1). Individual patterns indicate a start, end,
or decimal digit. Each pattern consists of seven
equal-width spaces or lines, starting with at least
one space followed by two transitions from spaces
to lines. Consecutive spaces or lines are permit-
ted. The check digit is calculated using the formu-
la 10 - [modulo 10 (total of odd digit values x 3)
+ (total of even digit values)]. The UPC is divided
into three parts, a Manufacturer’s code, a Product
code, and a check digit. Naturally, other UPC spec-
ification versions followed to increase the data
capacity and UPCs are still used today. Note: Pat-
terns following the Manufactur-

symbol with more information than a UPC symbol
(or other linear bar codes) could handle. To expand
this linear technology, the Codablock bar code sym-
bol stacked multiple bar codes into a single symbol.
While this was acceptable for the short term, the
density wasn't there, and it was not used to any
extent. However, it did get people thinking in two
dimensions instead of one dimension, as presented
in the linear UPC symbols.

ENCORE
One of the first 2-D codes I ran into was devel-
oped by United Parcel Service (UPS). The MaxiCode
symbol held a Structured Carrier message contain-
ing key information about a package (see Figure 2).
Right away you notice the bull's-eye pattern in the
center used as a registration point. Using a struc-
tured carrier means the data doesn’t have to be of
any fixed format other than to fit the block. While
multiple symbols can be chained

er's code use an inverted (or
one's complement) digit code.

together to contain larger data

You've undoubtedly had to find
the UPC code if you've ever used
a self checkout line. Laser scan-
ners read the UPC patterns and
translate them into a manufac-
turer/product code. That code is
looked up in the store’s database
to determine the item’s price.
Eventually, a clamor arose for a
machine-printable/readable

Mumber System

(HEY
756787146412"%5

\\\‘ 0
&

Manufacturer Brogitk
code enlis

Figure 1—Thanks to the Universal Product
Code (UPC) found on every product, a
cashier no longer must manually enter
prices at their register. This speeds up the
sale and eliminates entry errors. (Image
courtesy of Morovia Corp.)

(e.g., greater than 93 charac-
?cmgu ters), the symbol itself is not

expandable based on the mes-
sage size.

A more significant 2-D format
is the QR code. This format was
invented by Toyota subsidiary
Denso Wave for use in the auto-
motive industry in the early
1990s. Its recent popularity is
due to its fast readability and

CIRCUIT CELLAR® * circuitcellar.com

Figure 2—Who hasn't received a package
from UPS with this coding symbol on it?
Digital scales and specialized software
enabled every shipping department to
automate their shipping departments.
(Image courtesy of Wikipedia)

large storage capacity. From the get go, the design specifica-
tions required the format to be variable based on data size. At
the maximum designed size, a QR code will carry more than
7,000 digits or almost 3,000 ASCII characters. Why the differ-
ence? A restricted character set enables data to be packed
together more efficiently.

In this article, I'll examine all the pieces of a QR format and
implement a program (using Liberty BASIC, which you can run
on your Windows PC) that formats your own data into a QR
code symbol. You can play around with some variables (e.g.,
error correction strength and masking) to see how these can be
modified to make your symbol more robust. Let’s begin with the
skeleton that supports your data.

STRUCTURE

Providing an expandable structure to house data is an impor-
tant task. With the wrong size house, the data either won't fit
inside or you will have an abundance of wasted space. When
you expand a house, you don't just make everything larger, you
need to provide additional supporting elements to make the
increase in volume both safe and habitable. The basic QR frame
consists of a square matrix like a checkerboard where each
square is either black or white. You can think of this as an array
of elements that are either 1s or 0s. QR size is designated by
version number. It begins with Version 1 and extends up to Ver-
sion 40. The version humber defines the matrix’s size using the
formula: N = 4 x version + 17. This means a Version 1 array
will have 21 x 21 elements and a Version 40 will have 177 x
177 elements. You can begin simulating this by setting up an
array of binary information sized to your chosen version.

There are a few areas with this matrix that will always have
a specific pattern. The first is the orientation pattern, a matrix
of 7 x 7 elements forming a square bull’s eye. Three identical
bulls’ eyes are placed in the upper left and right and the lower
left corners. An additional band of white is used to separate the
orientation patterns from the rest of the elements for a total ori-
entation pattern of 8 x 8 elements. Next, there is a row and a
column of timing marks that connect the inside corners of each
bull's eye. Figure 3 shows these items in black and white with
all other (unaffected elements in gray) for a Version 1 symbol.
Notice the large white area around the symbol. While not part
of the matrix, the specifications suggest a clear border of four

I

o O O

. Figure 4—As a QR symbol grows in

: O o size, additional alignment patterns help
E decoding applications correctly interpret

individual elements.

circuitcellar.com * CIRCUIT CELLAR®

Figure 3—Essential orientation information

]] is consistent in every QR symbol. This
ol w1 n enables decoding applications to orient the
u symbol properly for data extrusion.
u
|

elements around the symbol to lessen the confusion of any sur-
rounding marks being part of the symbol.

As the version size increases, the specifications call out for
additional alignment marks to be placed within the symbol (see
Figure 4). These are smaller 5 x 5 bulls” eyes and do not have
the extra band of white around them as do the orientation pat-
terns. These help estimate the location of individual elements
by the decoding application. Table 1 indicates how many of
these alignment patterns are used and where they are posi-
tioned for each version symbol.

With the mechanism used to help figure out orientation and
pixilation, two other areas of interest can be located. The first
area is the format information consisting of the EDC level of
error correction and the mask used to present the data. The

Version Number of Alignment Patterns Layout

00
1 0 o

(eX6}
O x

OxO0
X X X

7-13 6

Oxx

Oxx0O
X X X X

14-20 13

XX XX

Oxxx

Oxxx0O
X X XXX

21-27 22

XXXXX

XX XXX

Oxxxx

Oxxxx0

28-34 33 XXX XXX

XXX XXX

XXXXXX

XXXXXX

OXXXXX

OxxxxxO

35-40 46 XX XXXXX

XXX XXXX

XXXXXXX

XXXXXXX

XXXXXXX

OXXXXXX

Table 1—Additional alignment patterns are strategically placed in the
symbol as the version size grows. This table shows the first in the
fourth quadrant aligned with the inside edges of the orientation marks
and additional alignment patterns centered and in rows and columns
between the orientation marks. These patterns aid in the estimation of
the element centroids by the decoding application.

—
~N
[aN]
[]
3
9]
wn
—
I
2]
~—
o
o
>
-
m©
=]
st
fa)
[0]
'8

February 2013 - Issue 271

N
o

Mask=000 Mask=0L1

b

Mask=0L0

s S,
(y) %6 2

y%2 X% 3 (+y) % 3
fask=100 Mask=L0L Mask=110 ﬂask=h)=
=TT A %
o e b B RS .
E -!_- o bl Bl B g %
=l b -
el
/2 +xi3) % 2 Xy¥ad + xy%ed (xy%e2 + xy%e3) %o 2 (xy%a3 + (x+y)%e2) % 2

Figure 5—Eight masking patterns can be chosen on a basis of presenting
data in a way that the message can be most easily and successfully
revealed.

EDC level is a 2-bit value where b"00"=M (15%), b“01"=L (7%),
b"10"=H (30%), and b"11"=Q (25%). Your data and the EDC
data share a fixed amount of space in any particular version size.
Therefore, choosing an EDC level with better correction capabil-
ities results in less space for the actual data and may require
using a larger version. One of eight potential masking patterns
will alter the way data is presented. Displaying the same data
using different masks can change the displayed pattern’s overall
look. Imagine if the data looked like alignment marks! This could
be confusing to the decoding application. Masking the data
would change the way it looks. However, as long as you include
what mask was used you can reveal the true data (by unmask-
ing it). Figure 5 shows these different masking patterns.

The 2-bit EDC-level digits along with the 3-bit mask digits
make up the first 5 bits of the 15-bit format. The format’s
remaining 10 bits are error-correcting data for the upper 5 bits.
With only 25 (32) possibilities, a look-up table can be used to
determine the appropriate code (precalculated using BCH ECC
and masked with its own special mask). I'll discuss masking in
more detail later in this article. The 15-bit format is wrapped
around the upper left orientation mark running along the bot-
tom and up the right side of the mark. To improve the potential
of recovery, this is repeated again running up the right side of
the lower orientation mark and continuing along the bottom of
the upper right orientation mark.

The last area of interest is the version code, which is only pre-
sented in QR symbols that are larger than Version 6. The 6-bit
version data and 12 bits of error-correcting data are arranged
in a 3 x 6 block along the upper left-hand side of the upper right
orientation mark and again (mirror image and perpendicular)
along the top of the lower orientation mark. Figure 6 shows the
placement of format data (red) and the version data (blue)
within the QR symbol.

Figure 7—All the information thus far is

in support of data recovery. I call this the
“[-space.” It is not affected by any mask-
ing done on the remaining D-space.

Figure 6—Version and format data include
EIEIE their own error-correction bits and are
E S placed twice within the QR code symbol to
H improve recovery rates.
O O O

E'EIEI

Figure 7 shows all the information data or I-space (black)
I just discussed, including orientation, timing, alignment, for-
mat, and version. This information mask must remain
untouched by the data (or the mask used to improve the
readability of the data), which will be placed into the data
area or D-space. Note: There is one pixel that has been
added to the I-space, it can be seen just above the first 6 bits
of the format running up the right-hand side of the lower ori-
entation mark in Figure 6. This is an odd pixel and should
remain as a “1."

ARE WE THERE YET?

Just when you thought it was time to add the data to the
D-space, I need to stop and add another level of complication
to all of this. The size of the D-space, once the I-space is
removed, is a fixed number of elements or bits depending on
the version size. Table 2 shows the number of bits for each.
The data inserted into the D-space comes from a long stream
of self-describing data (SDD). The SDD is of the type/
length/value (TLV) format. The type describes what kind of
data follows. The length indicates the number of data pieces.
The data includes not only the actual data, but filler and also
the error-correcting data. All of this is one long string of bits
that fills in the D-space. I should mention that the SDD likes
to keep things in relatively small blocks. This means the long
bitstream is made of multiple blocks. It may make more
sense to look at how I used ShopTalk Systems's Liberty
BASIC programming software to implement this. I'll begin
with the I-space.

Implementing this application to create a QR symbol begins
with a bit of housekeeping. However, not much can be done until
the user enters some data for the QR symbol to represent. Note,
a number of menu bar selections are presented across the top
of the application window (just above the information boxes)
shown in Photo 1. Clicking on the Data tab brings up a pop-up
data entry form for your data. Data can be packed when it con-
forms to some special rules. The data might be a telephone

Version | Numeric Data0-9 | Alphanumeric 0-9 A-Z plus $ % x + | Binary 8 bits
- [<space>
3 characters 2 characters 1 character
1-9 10 bits 9 bits 8 bits
10-26 12 bits 11 bits 16 bits
27-40 14 bits 13 bits 16 bits

Table 2—Some data types are packed using multiple characters. This
enables more characters to be fit into the available space. Therefore, the
number of characters that can fit into a symbol is based on the data type. A
fixed number of bits (describing the length) is expected (based on the maxi-
mum possible number).

CIRCUIT CELLAR® * circuitcellar.com

¢ QR4.03
Data Error Correction BlockSize Display Mask Quit

[Version2 | [Format Type 0100 [Binary) Enor Cortection Level M (15%)00 | [Block Sz 10 | [Displaging Matix

[g o]

[Mask 011

Photo 1—This application enables you to change parameters (e.g., ECC
level and masking) to see how these affect the symbol’s “'look.”

number (i.e., numeric), or a website address (i.e., alphanu-
meric), or even binary (e.g., ASCII) data. Your typed data gets
entered into the string EnteredString$. For this discussion, I'll
be using my website (WWW.IMAGINETHATNOW.COM) as
EnteredString$, the length of which is 22, stored into the
variable Datalength. I search this string looking for any non-
numeric or alphanumeric characters to determine what format
to use. I assign the variable fVar$=“0001" for numeric, “0010”
for alphanumeric, or “0100” for binary. The new format is
updated to the screen.

Note: Throughout this application, I'll be storing data in
strings in one of two ways, in binary string format (using only
the characters 0x30 “0” and 0x31 “1"), and in character format
(as a byte 0x00-0xFF). The binary format enables you to see
the data (as a 1s and 0s) when printed.

The application defaults to an error-correction level of “L”
(15%). You can use the Error Correction tab to choose a higher
level, if you wish. This sets EDCLevelBlock$="01" for level “L,”
“00” for level *M,” 11" for level *Q,” or “10” for level “H.” The
new EDC level is updated to the screen. This is the minimum
information necessary to begin building a QR symbol. To find out
what version (i.e., size) QR symbol is required, begin by packing
the data if necessary.

The SDD’s first 4 bits describe the type of data that is to fol-
low. While these 4 bits can define up to 16 data types, for this
discussion, I will touch on three of the four native kinds, numer-
ic “0001,” alphanumeric *0010,” and binary “*0100.” I'm going to
use the string DataString$ to hold the SDD and initialize it
with the type of data. Since I entered my website’s URL in
uppercase characters, this is considered alphanumeric data
and DataString$="0010".

Next I add the data length, in characters using Data
Length, to the SDD. This must be done using the appro-
priate number of bits according to the data type. This can
become confusing because the available space is fixed, but
packed numeric or alphanumeric data takes up less room
than binary. So the number of bits it takes to define the
data’s potential maximum length is different for each data
type. Table 2 shows how this breaks down. Note: 9 bits
(512 alphanumeric characters) is the smallest number of
bits for alphanumeric data. If it is less than 512 (and it is,
22) then 9 bits are used to represent the length.
22=b"10110", but I need to pad this to 9-bits,
"000010110". Append this onto DataString$ and it is now
*0010000010110".

circuitcellar.com * CIRCUIT CELLAR®

And now comes the actual data! Alphanumeric data is packed
into 11-bit chunks. The alphanumeric character set has been
redefined because it has only 45 characters. Multiply the first
character’s value by 45 and add it to the second character’s value.
EnteredString$ now appends what is shown in Table 3. If this is
not divisible by 8, then pad the end with “0s.” In this case, I need
to append “00” for a total of 136 bits or 17 bytes. The 17 bytes
is the magic number I will use to determine version size.

Since Liberty BASIC has good string manipulation, I use
strings and arrays of strings to simplify the programming.
There are a lot of tables of information in this application. Most
are initialized at the beginning by reading data statements into
them. These tables are easily viewed in the listing thanks to
their data statement format. Blocks(164,6) is one the of
largest tables used to hold information in this application. Table
entries are indexed by version number (1-40) x ECL (0-3) and
each entry holds six pieces of information, BlocklCount,
BlocklDatalLength, BlocklECCWLength, Block2Count,
Block2Datalength, and Block2ECCWLength. I need to locate
the appropriate table entry. This begins with selecting a level
of error correction (ECL). The higher the level of error correc-
tion, the greater the proportion of total space set aside for the
error correction code. For this example, I'll choose level “'M,”
which can correct a QR symbol with about 15% of its data
mangled. The (BTocks) table is now reduced to only 40 entries
(the 40 version entries pertaining to the chosen ECC level.) To
identify the version required, I need to compare my data
requirement (17 bytes) to the potential capacity of each ver-
sion, starting with Version 1. The version’s data capacity is its
(BlocklCount x BlocklDatalLength) + (Block2Count x
Block2Datalength). The first table entry (Version 1, level "M")
is 1, 16, 10, 0, 0, 0. The capacity for this version is therefore
(1 x16) + (0 x 0) = 16 + 0 = 16. Since I require more data
room then the 16-byte capacity of Version 1 (M), I move on to
the next entry. The second table entry (Version 2, level "M”) is
1, 28, 16, 0, 0, 0. The capacity for this version is therefore (1
x 28) + (0 x 0) = 28 + 0 = 28. This is capable of holding my
17 bytes, so I will use Version 2.

Note: This table also indicates the number of error-correcting
bytes Block1ECCWLength and Block2ECCWLength for each version

WW | =32x45+32 | =1440+32 | =1472 | =b10111000000' | =*10111000000"
W. =32x45+42 | =1440+42 | =1482 | =b10111001010" | =*10111001010"
M =18x45+22 | =810+22 | =832 =b'1101000000' ="01101000000"
AG =10x45+15 | =450+15 | =465 =b'111010001' ="00111010001”
IN =18x45+23 | =810+23 | =833 =b'1101000001' ="01101000001"
ET =14x45+29 | =630+29 | =659 =b1010010011' ="01010010011"
HA =17x45+10 | =765+10 | =775 =b"1100000111' ="01100000111"
™ =29x45+23 | =1305+23 | =1328 | =b10100110000" | =*10100110000"
ow =24x45+32 | =1080+32 | =1112 | =b'10001011000" | =*10001011000"
C =42x45+12 | =1890+12 | =1902 | =b"11101101110" | =*11101101110”
oM =24x45+22 | =1080+22 | =1102 | =b10001001110" | =“10001001110"

DataString$=*00100000101101011100000010111001010011010000000
011101000101101000001010100100110110000011110100110000100010
110001110110111010001001110”. The packed length of DataString$
=4+9+11+1 141141 1+11+11+1 141 1+11+11+11=134.

Table 3—The alphanumeric data is packed into 11-bit chunks.

February 2013 - Issue 271

N

BOARDS, BOOKS, DVDs AND MORE AT WWW.ELEKTOR.COM/STORE

Elektor.STORE

Stefan Schwark

Android Apps

amming step

lopment platform
evelop e progrommmg

progr
+ Eclipse d .
+ JAVA object orien

Jandroid

www.elektor.com

Programming step-by-step

Android Apps

easier than you think!

244 pages * ISBN 978-1-907920-15-8 $56.40

&

-by-step

This book and more
are available at

www.e\ektor.comlbog\f

This bookis an introduction to programming apps for Android devices. The operation of the An-
droid system is explained in a step by step way, aiming to show how personal applications can be
programmed. A wide variety of applications is presented based on a solid number of hands-on
examples, covering anything from simple math programs, reading sensors and GPS data, right
up to programming for advanced Internet applications. Besides writing applications in the Java
programming language, this book also explains how apps can be programmed using Javascript
or PHP scripts. When it comes to personalizing your smartphone you should not feel limited to
off the shelf applications because creating your own apps and programming Android devices is

Prices and item descriptions subject to change. E. & O.E

=
£
=
=

Free Software CD-ROM included
Elementary Course

BASCOM-AVR

The Atmel AVR family of microcontrollers are ex-
tremely versatile and widely used. Elektor maga-
zine already produced a wealth of special appli-
cations and circuit boards based on ATmega and
ATtiny controllers. The majority of these projects
perform a particular function. In this book how-
ever the programming of these controllers is the
foremost concern. Using practical examples we
show how, using BASCOM, you can quickly get

yourown designideas up and running inssilicon.

224 pages ¢ ISBN 978-1-907920-11-0 * $56.40

;Mas-t;ring
Surface Mount
Technology

| Bestseller!

LabWorX 2: Straight from the Lab to your Brain
Mastering
Surface Mount Technology

This book takes you on a crash course in techni-
ques, tips andknowhow to successfully introduce
Surface Mount Technology in yourworkflow. Be-
sides explainingmethodology and equipment, at-
tentionis given to parts technology and soldering
technique. Several projectsintroduce you step by
step to handling surface mounted parts and the
required technique to successfully build SMT as-
semblies. Many practical tips and tricks are dis-
closed that bring surface mounted technology
into everyone’s reach without breaking the bank.

282 pages ¢ ISBN 978-1-907920-12-7 + $47.60

Mastoretass

140 Min. Video Presentation
pvD Masterclass Feedback
in Audio Amplifiers

In this Masterclass we address several aspects
of feedback in audio amplifiers. The focus, al-
though not entirely math-free, is on providing
insight and understanding of the issues in-
volved. Presenter Jan Didden provides a clear
overview of the benefits that can be obtained
by feedback and its sibling, error correction;
but also of its limitations and disadvantages.
Recommended to all audio designers and

serious audio hobbyists!

ISBN 978-1-907920-16-5 * $40.20

More than 75,000 components
CD Elektor’s Components
Database 7

This CD-ROM gives you easy access to design
data for over 11,100 ICs, 37,000 transistors,
FETs, thyristors and triacs, 25,100 diodes and
2,000 optocouplers. The program package con-
sists of eight databanks coveringICs, transistors,
diodes and optocouplers. A further eleven ap-
plications cover the calculation of, for example,
zener diode series resistors, voltage requlators,
voltage dividers and AMV’s. A colour band de-
coder is included for determining resistor and
inductor values. All databank applications are
fully interactive, allowing the user to add, edit
and complete component data. This CD-ROM is
amust-have for all electronics enthusiasts!

ISBN 978-90-5381-298-3 « $40.20

Today Linux can be found running on all sorts of
devices, even coffee machines. Many electronics
enthusiasts will be keen to use Linux as the basis
of anew microcontroller project, but the appa-
rent complexity of the operating system and the
high price of development boards has been a
hurdle. Here Elektor solves both these problems,
with a beginners’ course accompanied by a
compact andinexpensive populated and tested
circuit board. This board includes everything ne-
cessary foramodern embedded project: aUSB
interface, an SD card connection and various
other expansion options. It is also easy to hook
the board up to an Ethernet network.

Populated and tested Elektor Linux Board

Elektor is more
than just your favorite
electronics magazine.
It’s your one-stop shop

for Elektor Books,

CDs, DVDs,
Kits & Modules
and much more!

www.elektor.com/store

@ektor

Elektor Us

111 Founders Plaza, Suite 300
East Hartford, CT 06108

USA

Phone: 860-875-2199

Fax: 860-871-0411
E-mail: order@elektor.com

If your USB device ever suffers from noise
caused by an earth loop or if you want to
protect your PC against external voltages
then you need a USB isolator. The circuit
described in Elektor’s October 2012 edition
offers an optimal electrical isolation of
both the data lines as well as the supply
lines between the PC and the USB device.

Populated and tested Board

This package consists of the three boards as-
sociated with the AVR Software Defined Ra-
dio articles series in Elektor, which is built
around practical experiments. The first
board, which includes an ATtiny2313, a
20 MHz oscillator and an R-2R DAC, will be
used to make a signal generator. The second
board will fish signals out of the ether. It con-
tains all the hardware needed to make a digi-
tal software-defined radio (SDR), with an
RS-232interface, an LCD panel, and a 20 MHz
VCXO (voltage-controlled crystal oscillator),
which can belocked to areference signal. The
third board provides an active ferrite antenna.
This bundle also includes the assembled and
tested FT232R USB/Serial Bridge/BOB PCB!

Signal Generator + Universal Receiver +
Active Antenna: PCBs and all components +
USB-FT232R breakout-board

—
~
o~
(]
3
9]
wn
—
I
™
~—
o
o
>
-
©
3
=
O
(0]
[

(I'l get to this shortly). While it's not evident by the first two
entries, large data is divided up into multiple chunks (of two
potential sizes, Blockl and Block?2) for easier processing.

Since my 17 bytes of data will not fill up the capacity of the
Version 2 data space, I need to append my 17 bytes with spe-
cial data bytes. "11101100" (OxEC) and “00010001” (0x11) are
alternately appended until the length equals the capacity of the
version used (here I add 11 special bytes). The DataString$ is
now complete. But before I can create the QR code, I need to
produce the error-correcting code that will go with my data.

ECC

Since the early days of computing, error correction has been
used to restore or at least point out possible data errors. When
retransmission of errant data isn't possible, it is necessary to
include enough additional information to be able to reconstruct
the original data. The Reed-Soloman algorithm used to detect
and correct multiple random errors is based on a finite (i.e.,
Galois) field with a length of 256 (0-255). Error-correction data
is derived from polynomial division between the data (message
polynomial) and a generator polynomial. To eliminate the need
for intense calculations, the application uses predetermined gen-
erator polynomials, selected from a table based on the Block
ECCWLength I found earlier in the Block() table. In my case,
BlocklECCWLength = 16, so I use entry 16 from the Generator
Polynomial$() table. It is 16 bytes long (0x78, 0x68, 0x6B,
0x6D, 0x66, 0xA1, 0x4C, 0x03, 0x5B, 0xBF, 0x93, 0xA9, 0xB6,
0xC2, OXE1, 0x78). For every 8-bits of data in Data String$, I
will perform a calculation that will result in a new generator poly-
nomial. I will use 256-byte tables to perform log and antilog con-
versions, which enable me to use simple addition instead of divi-
sion. Let's look at how this is implemented in BASIC.

It is important to remember that this routine must be per-
formed on every data block to calculate each block’s error-cor-
rection code. I only have one block to worry about in this exam-
ple (see Listing 1).

BlocklData$ and BlocklCode$ now contain the character
string data which together will fill the D-space. Let’s begin to
build the QR symbol.

QR ARRAY

Version 2 has a matrix equal to (version x 4) + 17, or (2 x
4) + 17 = 25 x 25 elements. To keep things as simple as pos-
sible, I will use two separate arrays QR(26,26) holding all the
data for both I-space and D-space and QRMask(26,26) indicat-
ing which Space each element belongs to. Elements of QRMask
array that are in the D-space will get data (from BlocklData$
and Block1Code$) and will be affected by the masking to be
performed after the QR symbol has been filled with data (more
on this soon).

Binary data “1” will be displayed as a black element while
“0” data will be displayed as a white element. Let’s begin by
adding the three target patterns to the arrays. Finder
Pattern(8,8) has been filled by data statements and repre-
sents the target patterns copied into the upper left, right, and
lower left corners of the arrays. The QR() array receives the
actual data from FinderPattern(8,8) while QRMask() array
has only “1s” written into the same element locations. A “1” in

any element of the QRMask () array signifies an I-space. A “1”
is written into both arrays to indicate that the odd element
should be black and is in the I-space (always in the same posi-
tion relative to the lower left target pattern.) Next the timing
patterns are written to the arrays (between the top target pat-
terns and the left target patterns.) Then the alignment pat-
terns are written into the arrays (quantity and placement
based on the version number).

The QR symbol’s format data is made up of the ECC level cho-
sen earlier ("M” = “00") and the final mask used, so it may
change once I get to that last function. For now, I'll use the (bit
string) format data for Mask 0. For ECC level "M” using Mask 0,
that would be "101010000010010" On Versions 7-40, the pre-
calculated (bit string) version information is copied from the
VersionBlock$ () array into the matrix arrays. In my case, Ver-
sion 2 does not have any version information held within the QR
symbol, so I'm done setting up the I-space for the arrays QR()
and QRMask().

While you might be tempted to assume the data is just
sprayed into the D-space like the words on a page, forget it. The
D-space is filled beginning with the lower right corner element
and proceeding in a column of two upward. The first columns in
my case are x=25 and x=24. These columns include rows y=25
through y=1. Note: I said D-space. Any I-space you come to
should be skipped, continuing on with the next element. When
I've finished row 1, I move 2 columns left (x=23 and x=22) and
proceed downward (to y=25). Note: column 7 (y=7) will be
skipped in its entirety, there is no D-space in column 7. This
example has a single Block consisting of BlocklData$ and
Block1Code$. When my data is contained in multiple blocks, I
just alternate between Block 1 and Block 2 data until all blocks
have been placed. Should there be an uneven number of
Blocks, I just skip over the unused Blocks. If any D-space is left,
I just leave it empty (“0s”).

MASKING

The last thing I must do is to apply a data mask to the
D-space. If the data in the D-space is to filled with data that
looks like alignment patterns, for example, the decoding appli-
cation will find it difficult to determine the “real” alignment pat-
terns. To eliminate this, a special mask is applied to all the data
in the D-space. There are eight masks from which to choose. A
test can determine which mask will provide the highest level of
success by a decoding application.

Each mask uses a different algorithm of row and column posi-
tion to determine whether or not each element in D-space
should be inverted. I've already stored the format information
for Mask 0, so I'll continue and use the Mask 0 algorithm ((row
x column) mod 2 = 0) on each element in D-space. For each
row and column position that is in D-space, if the algorithm is
true for that position, I invert the data.

After applying the mask, the matrix can be displayed. I
haven’t done any evaluation on the matrix at this point, but
after all this I need to “see” something. For small QR symbols,
I want to magnify (if you will) the matrix so it isn't too small. I
do this by letting the user choose an element’s size (i.e., how
many pixels wide and high). With this information, I can go
through the QR() array and display white or black squares

CIRCUIT CELLAR® * circuitcellar.com

Penalty Rule Penalty Points

“00000” or “11111” +3 (+1 for each additional consecutive element)
00" “11"00”or “11” 3

“00001011101” or “10111010000” 40

Ratio of “0s” to “1s” +ABS (INT (50 - (qty '1s' 100 /gty '0s'))) * 2

Table 4—For the first three rules, you can search the matrix (vertically and
horizontally) for matches to the particular pattern and total the penalty
points. The last rule is based on the “1” to "0” ratio. The more lopsided the
ratio, the higher the penalty.

depending on the data in the array. I also enable the user to
switch between displaying the QR symbol versus the I-Space
(i.e., mask of non D-space), just so you have an idea of how
much space is devoted to information versus “real” data.

Note: This application version does not do an analysis of the
QR symbol using each of the eight masks. It simply displays the
result using your mask choice. This enables you to visually see
the difference between using various masks, which I think is
more interesting than just letting the application determine the
best Mask. This way you can actually use “"Google Goggles” to
try and decode each masked version to see how it reacts. If you
would like to add automatic mask testing to the application,
read on to see how the evaluation is performed.

EVALUATION

To give decoding applications the best shot at interpreting
what they see, the QR symbol should have certain characteris-
tics that can be easily discerned without ambiguity. Having an
extra bull's eye or massive single-colored areas just creates
potential confusion. To reduce this to a minimum, the D-space
must be masked with selected patterns. While I can take a look
at a finished symbol and “see” if there are areas of confusion,
getting an application to do this requires a way of rating each
masking result. Table 4 lists rules and the penalties incurred for
each infraction.

You might think you only need to check for penalties on the
D-space because the I-space remains constant for each mask.
However, the format code (part of I-space) does change. Also,
some rules are based on all elements and not just those in
D-space. Liberty BASIC has an INSTR(a$,b$,n) command that
can be used to easily look for matches. This is a good reason
for using binary strings as opposed to character strings.

Finally, you may wish to save the QR symbol. It can be saved
as a bit-mapped image (.BMP) or printed out. There is nothing
magical about using black and white or square element
shapes. Decoding applications are looking for enough contrast
between a “0” (light) and a “1” (dark) to determine the ele-
ment’s state. You can find some QR symbols using multiple col-
ors. In addition, you can also find logos and other graphics
superimposed atop a symbol. And, because of the high error-
correction level used, the decoding application can still figure
out what’s hidden. There’s a fine balance between artistic
license and readability.

I have one last comment. As you know, a QR symbol can
hold just about any kind of information. This includes exe-
cutable code. Decoding applications should inform you of
this and let you decide if you want this code to (attempt) to
execute. Unfortunately, similar to what we see in e-mail attach-
ments, there may be malicious intent and it is best to cancel

circuitcellar.com * CIRCUIT CELLAR®

any process unless you feel confident in the source. With that
said, I hope you have fun creating your own QR symbols. &

Jeff Bachiochi (pronounced BAH-key-AH-key) has been writing for
Circuit Cellar since 1988. His background includes product design
and manufacturing. You can reach him at jeff.bachiochi@
imaginethatnow.com or at www.imaginethatnow.com.

PROJECT FILES

To download the code, go to ftp://ftp.circuitcellar.com/
pub/Circuit_Cellar/2013/271.

RESOURCES

J. Brown, Matcha Design, “QR Code Demystified: Part 1,”
2011, www.matchadesign.com/blog/qr-code-demystified-
part-1.

C. Eby, Thonky, "QR Code Tutorial,” 2012,
www.thonky.com/qr-code-tutorial.

RedTitan Technology, Ltd., "QRCODE Layout,” 2011,
www.pclviewer.com/rs2/qrtopology.htm.

SOURCE
Liberty BASIC programming software for Windows
Shoptalk Systems | www.libertybasic.com

- NEED-TO-KNOW INFO

Knowledge is power. In the computer applications
industry, informed engineers and programmers don't just
survive, they thrive and excel. For more need-to-know
information about some of the topics covered in this arti-
dle, the Circuit Cellar editorial staff recommends the fol-
lowing content:

CE Marking
A Process to Ensure Product Conformity
by Robert Lacoste
Circuit Cellar 257, 2011

What is CE marking and why is it important? CE
stands for Conformité Européenne, which is French for
“European Conformity.” CE marking states that the
manufacturer of the product ensures that the product is
compliant with the essential requirements of the rele-
vant European directives. Learning about CE marking is
useful for engineers who are both using and designing
products. Topics: Coding, Product Marking

Error Checking
by Jeff Bachiochi
Circuit Cellar 250, 2011

Data security isn't a perk. It's a requirement. This
article covers the topics of error checking, checksums,
and the cyclic redundancy check. Error checking mat-
ters. Topics: Data Security, Error Checking

Go to Circuit Cellar's webshop to find these arti-
cles and more: www.cc-webshop.com

February 2013 - Issue 271

N
4]

—
N
o
[}
=]
0}
[0}
—
1
(12)
—
o
o
>
_
©
S
—
Qo
(0]
(1S

20

Across

3.

= = 00N »h
o -

13.
16.

18.
19,

20.

Used on PCBs intended for extreme envi-
ronments [two words]

An often repetitious code sequence
Measures program volume [two words]
An electric current identifier

W n”
.'n!
. Evaluates radio frequency circuits [two

words]

Non-binary code [two words]

One of a group of three co-inventors who,
in 1956, were awarded the Nobel Prize in
Physics for creating the transistor

An insulating board’s surface

Concept proposed by Belgian engineer
Charles Bourseul in 1856

Electric motors and loudspeakers, for
example

Do
1.

2.
5.
6.

9,

12.
14
15.
17.

wn

A type of inductor or transformer whose windings
form a closed circular tube

May be used to control volume on audio equipment
Often used to produce and detect high voltages,
sound, and electronic frequency generation

An electronic circuit board manufacturing method
[two words]

An energy-storing device

A single-channel power amp with high current power

. Quality over time

Used to measure small objects’ thickness
Austrian engineer (1907-1992) credited with invent-
ing the printed circuit

The answers are posted at circuitcellar.com/crossword and

will be available in the next issue.

DEA
BOX

THE DIRECTORY OF
PRODUCTS AND SERVICES

AD FORMAT: Advertisers must furnish digital files that meet our specifications (circuitcellar.com/mediakit).
ALL TEXT AND OTHER ELEMENTS MUST FIT WITHIN A 2" x 3" FORMAT. E-mail adcopy@circuitcellar.com with your file.
For current rates, deadlines, and more information contact Peter Wostrel at 978.281.7708 or peter@smmarketing.us.

The Vendor Directory at circuitcellar.com/vendor
is your guide to a variety of engineering products and services.

C ORA ORATI ON

Electronic and Electro-mechanical
Devices, Parts and Supplies.
Wall Transformers, Alarms, Fuses,
Relays, Opto Electronics, Knobs,
Video Accessories, Sirens, Solder
Accessories, Motors, Heat Sinks,
Terminal Strips, L.E.D.S., Displays,
Fans, Solar Cells, Buzzers,
Batteries, Magnets, Cameras,
Panel Meters, Switches, Speakers,
Peltier Devices, and much more....

www.allelectronics.com
Free 96 page catalog
1-800-826-5432

Free Windows Example source code written in C++
available.

All CAN Features are programmable. 11&29 bit
identifiers, Filters, Masks, Baud rate up to 1Mbps.

d version available for harsh

optically |
conditions.
CAN-Repeater has DIN rall mount for your

{Requires +9 to +24V supply) Great device to
distribute power and CAN to many
Nodes on your Bus! This is a great device 1o help
clean up the noise on CAN buses which have loo
many nodes. Each branch has selectable

to of bus refi

Ultrasonic Distance
Sensing Made EZ

HRUSB-MaxSonar®-EZ™
- Multi-Sensor operation

- USB interface

- Easy integration

-1 mm resolution

- Calibrated beam pattern
- Starting at $49.95

HRXL-MaxSonar®-WR™
- Incredible noise tolerance
- IP67 rated

-1 mm resolution

- Multi-Sensor operation

- Calibrated beam pattern
- Starting at $109.95

12CXL-MaxSonar®-EZ™
- Great for UAV’s and robotics

- Incredible noise immunity =
- 12C interface

- 1cm resolution

- Automatic calibration
- Starting at $39.95

www.maxbotix.com

MICROCONTROLLER KITS

fomy

" LEARN
CREATE
EXPLORE

BASIC ON BOARD

ATRIA Technologies Inc.
www.AtriaTechnologies.com

circuitcellar.com * CIRCUIT CELLAR®

1°’C/ISMBus

® Bus Monitors

® Protocol
Analyzers

® Host
Adapters

® Multiplexers

® Battery
Applications

® Software
Tools

Micro Computer Control

oar

ISMTB

“JAMECO [EETEES

W ELECTRONICS S 18 company

amazoncom amazoncouk|

February 2013 - Issue 271

N
N

February 2013 - Issue 271

N
@

www.cesinfo.com

ol ah 3

e "O sales@ccsinfo.cotm
- 262-522-6500

VERSION 5 IS THE
CoDE CONQUEROR

* Flow control and Interrupt buffered to
serial routines libraries-specify size of
transmit buffer, size of recelve buffer, Interrupt
usage or o interrup usage, pin for CTS and pin
for RTS

e CProfiler-continuous loggingand ~ »
analyzing run-time events to givea ofile
of the program -

¢ IDE Enhancemente-fastendebugging,

upgraded wizards and Windo

Input Capture and PWM

better use of capture/compare

capture and output capture pa‘éi

PIC MCU

WWW.CCSINFO.COM/ CCFVER

Low Cost CAD Software for
Windows XP, NT and Vista

® Circuit design package with
schematic entry circuit-board
layout with autorouting and
simulation for only $499!

¢ Buy modules starting at $119
(SuperCAD, SuperPCB,
mentalSPICE & SuperSIM)

¢ Order and download instantly

® Full up package allows upto 16
layers plus 4 power planes

o Manufacture ¢ircuit boards at
any board house

Mental Automation, Inc.
953-858-8104
www.mentala.com

microEngineering Labs, Inc.

www.melabs.com

888-316-1753

PC-Tethered USB Model (shown):
-Standalone software
«Command-line operation
-Hide GUI for automated use
«Override configuration with drop-downs

Stand-Alone Field Programmer:
-Power from target device or adapter
-Program file stored on SD-CARD
-Programming options stored in file

Starting at $79.95

«Single-button operation

Program in-circuit or use adapters for unmounted chips.
Zero-Insertion-Force Adapters available for DIP, SOIC, SSOP, TQFP, and more.

PIC is a registered trademark of Microchip Technology Inc. in the USA and other countries.

GHz BGA/QFN Sockets
O.Bm to 1.27mm

Industry ‘s Smallest Footprint
* Up to 500,000 insertions
* Bandwidth up to 40 GHz
& *35mm per side larger than IC
* Ball Count over 3500,

[O

Body Sire 2 - 100mm
FFive different contactor options
Piptional heatsinking to 100W
- wdifferent Lid Options
* <25 mil Contact Hesistance

ELECT
www.ironwoodelectronics.com

PDQ Board™ - A Fast I/0O-Rich
Single Board Computer

AN
\\\\“\\
Y

$159/100s

o Low cost 2.5"x4”
C-programmable
computer

16-bit HCS12 processor clocked at 40 MHz
8 PWM, 8 counter/timer, and 8 digital I/O
16 10-bit A/D inputs

Dual RS232/485 ports, SPI and I?C ports

512K on-chip Flash, 512K RAM with

Flash backup

o Plug-in I/0 expansion, including Ethernet,
Wi-Fi, GPS, 24-bit data acquisition, UART,
USB, Compact Flash card, relays, and more ...

Mosaic Industries Inc.
tel: 510-790-1255 fax: 510-790-0925
www.mosaic-industries.com

Your Microcontroller

Add a Touch Screen to

Qur Display Module

Your Embedded Product

* No special OS or Library Required.
+ Programming GUI is Simple.
« Development Kit = Up and Running in Days.

Learn more at oA
www.reachtech.com, \\i“"

i
or contact us at \
® e =
-

510-770-1417 or

sales@reachtech.com.
Development Kits include
serial LOD controller board,

4’ display, touch screen, cables,
/& sampde images/code, power

r{ - c’ |4 supply, technical suppart,

100% Satisfaction Guarantes.

TECHMNOLOGY INC

ONE

POWERFUL
TOOL FOR YOU

The Entire Circuit Cellar
Magazine Archive on a
Limited-Edition 25"
Anniversary USB drive!

Order today at
cc-webshop.com

CIRCUIT CELLAR

YEARS (OF EMBEDDED INSIGHT

CIRCUIT CELLAR® * circuitcellar.com

LISTEN

TO YOUR MACHINES

Ethernet PLCs for OEMs

» hip (FT232H, FTDI)
® Ready to use, royally free
USB drivers

e USB 1.1 and USB2.0 compatible

e Dala transfer rate to 8 MB/sec
with D2xx driver

° 2.1%1.3"

100+ Low Cost Controllers with ADC, DAC, UARTs, 300 I/0s, solenoid, relays, CompactFlash,

LCD, Ethernet, USB, motion control. Custom hoard design. Save time and money.

TERIN 1950 5th Street, Davis, CA 95616 UsA < ==

INC. Tel: 530-758-0180 * Fax: 530-758-0181 www.tern.com o sales@tern.com

FMD88-10

and FMD1616-10

Integrated Features :

- ETHERNET / Modbus TCP/IP
- 16 or 32 digital 1/0s

- 10 analog 1/0s

- RS232 and RS485

LOGIC/AL

PEWICES, IN<c.
Y2

; %“5;:

Revolutionary new
expandlO-USB chip |

- LCD Display Port , Sho r USB
- 1/0 Expansion Port [el Status
= LaddeP+ BASIC Programming | Vpl;i.? 96& A/D-/O-SPI-12C
s + |deal for adding USB to sensors & peripherals
$229 and $295 11111117 - * No drivers needed for Windows, Mac, Linux
before OEM Qty Discount i e » No microcontroller programming required
Universal USB ngrammer - Also check out our USB-232 USB to UART
www. hexwax.com - Buy from Mouser & Farnell
tel : 1877 TRI-PLCS suringa $195.001! - —~ —
web : www.tri-plc.com/cci.htm . UV Eraser $69.00 : AmaZIng
PLD design Software $49.00
. Stand Alone Copier $175.00 PIC programmer
Tel:303-923-8080 Most devices supported

RESEARCH

ICSP, SQTP, & copy limits
INTERNATIONAL igi

support@logicaldevices.com

www.logicaldevices.com

CROSSWORD ANSWERS from Issue 270

Across Down ; ‘ ‘ ‘ ‘ ‘ ‘
1. The first widely used televi- 2. Combines two types of functions in a binary circuit OlSICIOIPIE
sion camera tube with two or more inputs and one output [two words] :

. Responds to disturbances 3. Won the Nobel Prize in Physics twice _ rlelrlr]ule]T

[two words] 4. Developed in 1904 by English engineer John

. On the right of an integer, Ambrose Fleming , g o lol [nl2]
on the left of a fraction [two 6. A device that receives part of a transmitted pulse X|PIOJLINIT
words] and transmits it back to the receiver [two words]

11. Bridge circuit used to meas- 7. Used to simplify algebra expressions [two words]
ure resistance 9. English scientist (1791-1867) who published the

14. A versatile, easy-to-design law of induction
filter [two words] 10. Tuning that uses a single control to tune two or : 5

16. Light scattering [two words] more circuits . .
17.Akind of passive fiter 12. French instrument maker Hippolyte Pixii developed
18.MCU pin [two words] a prototype for this in 1832 [two words]

19. The result never changes 13.Whatan LED does o
[two words] 14.Awa_1veform with a slow linear rise time and a fast
fall time
15. An absolute-positioning actuator that is typically
limited to a 180° rotation [two words]

mlplrlpla

alile

vinlplallrlelrlr

P‘U O‘U‘T‘P‘U‘T‘

mlploltlelnlT[elalw

circuitcellar.com *® CIRCUIT CELLAR®

February 2013 - Issue 271

N

~
N
o~
[}
=]
0
[0
—
I
™
—
o
o
>
_
©
S
—
o
(0]
L

Can anyone deny that we're on the verge of some major
breakthroughs in the fields of microcomputing, wireless

communication, and robot design? Tech the Future is a
recurring section devoted to the| ideas and stories of
innovators who' are developing | the groundbreaking
technologies of tomorrow.

Open-Source Hardware
for the Efficient Economy

By Catarina Mota and Marcin Jakubowski

In the open-source hardware development and distribution model, designs are created collaboratively
and published openly. This enables anyone to study, modify, improve, and produce the design—for one’s
own use or for sale. Open-source hardware gives users full control over the products they use while unleash-
ing innovation—compared to the limits of proprietary research and development.

This practice is transforming passive consumers of “black box” technologies into a new breed of user-
producers. For consumers, open-source hardware translates into better products at a lower cost, while
providing more relevant, directly applicable solutions compared to a one-size-fits-all approach. For pro-
ducers, it means lower barriers to entry and a consequent democratization of production. The bottom line
is a more efficient economy—one that bypasses the artificial scarcity created by exclusive rights—and
instead focuses on better and faster development of appropriate technologies.

Open-source hardware is less than a decade old. It started as an informal practice in the early 2000s with
fragmented cells of developers sharing instructions for producing physical objects in the spirit of open-source
software. It has now become a movement with a recognized definition, specific licenses, an annual confer-
ence, and several organizations to support open practices. The expansion of open-source hardware is also
visible in a proliferation of open-source plans for making just about anything, from 3-D printers, microcon-
trollers, and scientific equipment, to industrial machines, cars, tractors, and solar-power generators.

As the movement takes shape, the next major milestone is the development of standards for efficient
development and quality documentation. The aim here is to deliver on the potential of open-source prod-
ucts to meet or exceed industry standards—at a much lower cost—while scaling the impact of collaborative
development practices.

The Internet brought about the information revolution, but an accompanying revolution in open-source
product development has yet to happen. The major blocks are the absence of uniform standards for design,
documentation, and development process; accessible collaborative design platforms (CAD); and a unifying
set of interface standards for module-based design—such that electronics, mechanical devices, controllers,
power units, and many other types of modules could easily interface with one another.

Can unleashed collaboration catapult open-source hardware from its current multimillion dollar scale to
the next trillion dollar economy?

One of the most promising scenarios for the future of open source hardware is a glocal supply chain made
up of thousands of interlinked organizations in which collaboration and complementarity are the norm. In
this scenario, producers at all levels—from hobbyists to commercial manufacturers—have access to trans-
parent fabrication tools, and digital plans circulate freely, enabling them to build on each other quickly and
efficiently.

The true game changers are the fabrication machines that transform designs into objects. While equip-
ment such as laser cutters, CNC machine tools, and 3-D printers has been around for decades, the break-
through comes from the drastically reduced cost and increased access to these tools. For example, online
factories enable anyone to upload a design and receive the material object in the mail a few days later. A
proliferation of open-source digital fabrication tools, hackerspaces, membership-based shops, fab labs,
micro factories, and other collaborative production facilities are drastically increasing access and reducing
the cost of production. It has become commonplace for a novice to gain ready access to state-of-art pro-
ductive power.

On the design side, it's now possible for 70 engineers to work in parallel with a collaborative CAD pack-
age to design the airplane wing for a Boeing 767 in 1 hour. This is a real-world proof of concept of taking

February 2013

Catarina Mota is a New York City-
based Portuguese maker and
open-source advocate who
cofounded the openMaterials
(openMaterials.org) research
project, which is focused on
open-source and DIY experimen-
tation with smart materials. She
is both a PhD candidate at FCSH-
UNL and a visiting scholar at
NYU, and she has taught work-
shops on topics ranging from hi-
tech materials and simple cir-
cuitry. Catarina is a fellow of the
National Science and Technology
Foundation of Portugal, co-chair
of the Open Hardware Summit, a
TEDGlobal 2012 fellow, and
member of NYC Resistor.

(

Marcin Jakubowski graduated
from Princeton University and
earned a PhD Fusion Physics from
the University of Wisconsin. In
2003, Marcin founded Open
Source Ecology (OpenSource
Ecology.org), which is a network
of engineers, farmers, and sup-
porters. The group is working on
the Global Village Construction
Set (GVCS), which is an open-
source, DIY toolset of 50 different
industrial machines intended for
the construction of a modern
civilization (http://vimeo.com/
16106427).

development to warp speed—though achieved with proprietary tools and highly paid engineers. With a widely available, open-source collaborative
CAD package and digital libraries of design for customization, it would be possible for even a novice to create advanced machines—and for a large
group of novices to create advanced machines at warp speed. Complex devices, such as cars, can be modeled with an inviting set of Lego-like build-
ing blocks in a module-based CAD package. Thereafter, CNC equipment can be used to produce these designs from off-the-shelf parts and locally

available materials. Efficient industrial production could soon be at anyone’s fingertips.

Sharing instructions for making things is not a novel idea. However, the formal establishment of an open-source approach to the development
and production of critical technologies is a disruptive force. The potential lies in the emergence of many significant and scalable enterprises built on
top of this model. If such entities collaborate openly, it becomes possible to unleash the efficiency of global development based on free information
flows. This implies a shift from “business as usual” to an efficient economy in which environmental and social justice are part of the equation.

CIRCUIT CELLAR®

® circuitcellar.com

wwwftdichipcom FTDI
CNHANCED LS
SERFORMANCE

Streamlined USB
Bridge Solutions

X-CHIP

E <{tensive Interfaces
UART, FIFO, SPI, I2C, FT1248

F <tended Features

N RBattery charger detection

48 Low active power (& mA, typical)

ﬁ Internal MTP memory
Expandable clocking; clock generation

4 and system clock out

E <ceptional Drivers
2 Windows, MacOS, Android, and Linux

Power of the
in the palm of your hand!

At a click of a button we will find the best
price in the market compiled in one easy to
read spreadsheet
...just like your BOM.

........

e
Lkiiidlid §

appenTnggiNoy
P@Bnet.c&‘_n‘\-.

847-806-0003 @)ﬂéiﬂuil{%&u—.
im;—‘x\

ITAR, | SO 9001:2008, UTRRPFOVe N

