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Projects

Extremely Low Frequency (ELF)
Receiver

You can in fact receive some
extremely interesting signals
between 0 Hz and about 20 Hz.
Using the receiver described here,
an ADC module, an Arduino and
some free PC software it is possible
to receive and make recordings of
these signals.

PWM Control for Flashlight
The main function of this unit is to
reduce the brightness of an LED at
the user’s command.

An additional function is also
provided: the LED can be flashed
at full intensity, which can come in
handy for example when you are
walking at night.

Temperature Sensor Board
This board is equipped with an
ATtiny microcontroller and an RS-
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485 driver, and it is possible to
connect several sensors in parallel
to one board.

In addition we present some
example firmware which
communicates temperature
readings using the ElektorBus
protocol.

Dot Display driver
An indicator for four ranges, based
on opamps, with LED readout.

Microcontroller BootCamp (6)
We delve into serial
communication—specifically,
using the SPI bus and associated
protocol.

IoT & the Search for a Protocol
Calling engineers and software
designers collaborate on a solid
protocol for IoT devices.
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Lux Meter

Don't believe the hype or the
manufacturer—with this instrument
you can reveal the real light
intensity produced by lamps.

Chip Tip:

MagI3C-VDRM

There’s no end in manufacturers
honing the performance of the
voltage regulator. Here's a very
advanced one.

Visual Basic

on the Raspberry Pi

If Python is not up your street,
try something a little easier—say,
Visual Basic.
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Review

One for All

A technical look at the latest ICE
Debugger/programmer Atmel says
covers all of their AVR, Xmega and
ARM-Cortex devices.

Industry

News & New Products

A selection of news items received
from the electronics industry, labs
and organizations.
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DesignSpark

DesignSpark Tips & Tricks

Day #14: The Autorouter

This month we drop manual PCB
design work and unleash the
autorouter.

Magnetrons
Weird Components—the series.

Labs

3D Printing Sure Can Be Useful
Clemens Valens convinces himself
that a small percentage of 3D
printed objects might just serve a
purpose in electronics.

USB Fix

Help! The USB connection is
broken! For real! Hardware-wise!
Literally!
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Regulars

Retronics

A 1965 Telefunken Carphone
A look at the infant years of the
German mobile radio network.
Series Editor: Jan Buiting.

Hexadoku
The Original Elektorized Sudoku.

Gerard's Columns: Knowledge
vs. Understanding

A column or two from our
columnist Gerard Fonte.

Next Month in Elektor
A sneak preview of articles on the
Elektor publication schedule.



By Kurt Diedrich
(Germany)

Extremely Low Frequency

(ELF) Receiver
Arduino + ADC = ELF

If you Google
the terms ELF,
ULF, or VLF it
transpires that the
lowest frequencies of all electro-
magnetic interference (EMI) signals

are generated by electrified railways and not a lot more

beyond this. Wrong! You can in fact receive some extremely interest-
ing signals between 0 Hz and the ‘railway’ frequency of 162/5 Hz. Using the receiv-
er described here with an ADC module described in a separate article and some

free PC software it is possible to receive and make recordings of these signals.

It had always fascinated me what I might hear—or
rather see on an oscilloscope—if I could connect
a pick-up coil, with a couple of hundred turns on
it, to an extremely sensitive amplifier. A dozen
or so years ago I decided to turn this supposition
into fact using modern electronics.

The first circuit 1 constructed for this purpose
differed from the version presented here only
by having a cruder filter and a somewhat old-
er-fashioned method of analog to digital con-
version. To my surprise there appeared on the
monitor screen more than the power frequency
hum that I was expecting but unfortunately the
confused serrations of the complex time signals
did not allow me to draw any conclusions from
about their composition. [this article was writ-

ten in Europe where the AC supply frequency is
50 Hz but exactly the same methods will work
in territories where the line frequency is 60 Hz.
Please read ‘60" wherever you see ‘50" from now
on, If you live in a 60 Hz country. Ed. ]

Eventually, after I submitted my received data to
FFT-versus-Time analysis, it became very clear to
me that that this ‘wriggling about” on the screen
was the result of recurring signals of typical struc-
tures, which could be resolved only if they could
be compressed over prolonged periods of time.
They were also audible if played back at higher
speed, sometimes reminiscent of animal sounds
or teletype transmissions on the short waves. In
any case, all this was sufficiently interesting to
keep me occupied with it ever since. Readers who



are interested will find further detailed informa-
tion at the blog viIf.it [3], which is a platform for
enthusiasts involved with receiving and experi-
menting in the ELF and VLF bands. I have pub-
lished a number of articles there on this theme
along with many screen shots.

Among other things, we need to understand that
supply transformers in residential areas radiate
extremely weak magnetic waves between around
0.3 Hz and 25 Hz. These are up to 1,000 times
weaker than the interference fields produced by
the 50 Hz AC supply. To receive the desired fre-
quencies without interference, we need to filter
out the 50 Hz (60 Hz) supply hum as early as
possible ahead of the main amplifier in order to
avoid over-driving the receiver.

The circuit

The receiver described here operates in conjunc-
tion with the ADC module described in a separate
article, an Arduino Uno and some free—that goes
without saying—recorder software for the PC. This
combination makes it possible to detect, display
and log weak alternating currents and/or alter-
nating magnetic fields at frequencies down to less
than 1 Hertz. The receiver output can additionally

be connected to other recording devices, all the
time keeping in mind that signals below 16 Hz
will be attenuated heavily by PC sound cards.

The circuit is made up from a combination of a
highly sensitive voltage amplifier and a steep
(36 dB per octave) Sallen Key low-pass filter with
a cut-off frequency of approximately 21 Hz. The
receiver has the task of amplifying extremely
weak magnetic waves in the frequency range
from 21 Hz down to (almost) 0 Hz and filtering
out line hum interference in the process. Figure 1
shows the schematic for this receiver, which is
made up from the functional groups that follow.

Linearizer and preamp

The extremely weak (in the microvolt region) AC
signals of interest here are picked up with a coil
and once processed and optimized in @ combi-
nation of preamplifier and low-pass filter (IC1),
they are directed to the Sallen Key low-pass filter
that follows. This simple upstream low-pass filter
(a pre-filter so to speak) is necessary specifically
for attenuating any 50 Hz line frequency interfer-
ence in relation to the wanted signal to prevent
overloading that might generate a square-wave
signal between the maximum output voltages

Figure 1.
Schematic of the ELF
Receiver (without Data

Logger).
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Figure 2.
Amplifier flatness at the
output of IC1.

Figure 3.
Filter IC3 achieves a slope of
around 36 dB per octave!

Figure 4.

The common-mede choke
reduces interfering noise by
up to 40 dB.

of the op-amp. This could occur were the coil
to be placed close to a power cable in which a
heavy current was flowing. The circuitry associ-
ated with IC1 has a second function: the char-
acteristics of the coil at the input of the circuit
mean that low frequencies are attenuated appre-
ciably, so that the amplitude of received signals
in the region of zero Hz is weakened increasingly.
We can compensate or ‘linearize” this to a large
extent using the effect of capacitor C1 in paral-
lel with R2. Figure 2 shows the amplification at
the output of IC1.
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The stage built around IC2 is a well-known ‘stan-
dard’ circuit involving an inverting amplifier. The
gain factor can be varied by selecting one of sev-
eral feedback resistors. This feature is absolutely
necessary since completely different intensities
of the received signal may arise, according to
the position of the receiver. R4 is not a built-in
part of the selector switch, ensuring that there is
always some degree of negative feedback, even
when the switch settings are open-circuit. This
has the advantage that at the moment of swi-
tchover, when the switch contact “hangs in mid-
air’ for a very brief timespan, no interference
pulses appear on the receiver output.

The gain or amplification of the inverting ampli-
fier arises from the guotient negative feedback
resistance divided by the upstream resistor:

V= Ry/R,

By switching from R7 down to R4 alone we have
successively (approximate) gain settings of 5,
10, 21 and 47, the last of these values being
when the three switches or jumper links are all
open-circuit.

Filter

The remaining four op-amps are combined in a
single IC, the TLO74. IC2A to IC2C together form
a Sallen Key Filter with fast roll-off providing 36
dB per octave in total. The elevated level of the
50 Hz signal relative to the desired signal makes
this filter extremely necessary, to prevent over-
loads. To learn more about Sallen Key Filters you
can find the desired background information in
the technical literature and on the Internet [2].
The cut-off frequency of the filter is, precisely
stated, 21.5 Hz, which is far enough removed
from the interfering 50 Hz and is still outside the
desired reception range.

You should stick to the values given for the capac-
itors and resistors as closely as possible, as the
required transfer characteristic cannot be guar-
anteed. Figure 3 shows how steep the flanks of
the resulting filter are (measured at the output
of IC3C).

High-pass and final stage

At high levels of gain (according to the setting
of P1 up to about 50,000) it's possible that even
guite small offset voltages could nevertheless
be sufficiently large to shift the output signal by
several volts into the positive or negative regions



and become an undesirable disruption. To avoid
this, a high-pass filter (C8+C9/R14) is provided
between the filter output (IC3C) and the input to
the amplifier stage IC3D following, with a cut-off
frequency arranged to lie well below the target
range. In this way the filter does not affect the
frequency response of the received signals. The
voltage at the the output of IC3D is thus always
symmetrical around zero. Trimpot P4 is used to
adjust the total gain of IC3D between 0.5 and
about 10.5. In conjunction with the switchable
pre-filter stage this should suffice for well-nigh
all user situations.

Powering the circuit

Power connections are provided for 6 V recharge-
able (or plain) battery operation. Initially the
voltage is reduced to 5 V and stabilized in IC4,
to suit the needs of the TMA0512D converter that
follows. This converter changes the input voltage
of 5V into two complementary output voltages
of 12 V, used for powering the op-amps. Do not
omit any of the chokes and capacitors shown in
the schematic of the power supply section, as
these are absolutely necessary to reduce interfer-
ence from electrical noise. Figure 4 shows, for
example, the beneficial effect of using the com-
mon-mode choke L4; this suppresses noise in the
relevant frequency range by around 30-40 dB!
If you prefer to power the receiver using an AC
adapter rather than batteries you can connect
a 6-V wall wart power adaptor of the necessary
amps rating.

Coil and electrodes

To detect weak magnetic fields a sensitive receiv-
ing antenna is necessary, so we should connect a
coil with around 2,000 to 4,000 turns of as large
a diameter as possible. This does not have to be
as full-blown an affair as the one shown in Fig-
ure 5; a diameter of 12 to 20 inches (30 — 50 cm)
will be perfectly adequate (to begin with). The
sensitivity of the coil (not to be confused with
its inductance!) increases linearly with the area
enclosed by the coil former and the number of
turns. The coil should be ring-shaped and if you
buy the wire from a specialist supplier coiled in a
roll [3], you can create your coil rapidly and eas-
ily using a coil-winding machine made at home
from an old Erector or Meccano outfit.
Enameled copper ‘magnet’ wire of 30 AWG
(0.25 mm) diameter turned out to be a partic-
ularly good choice for making the coil. It is not

so thin that it would snap instantly if handled
roughly.

During signal reception the coil must lie flat on
a non-metallic surface, as far away as possible
from any AC power cables with current flow-
ing through them. Important: on account of the
Earth’s magnetic field, the receiver should be
operated only when the coil is not subjected to
any movement or agitation.

As an alternative to the pickup coil, the receiver
can also be used with electrodes, consisting of
metal probe spikes about & inches (20 cm) long,
pushed into the ground at a distance about 7 feer
(2 m) apart. In this way you can detect alternat-
ing currents in the prescribed frequency range
present in the Earth's surface.

Safety warning: If you are working with ground
electrodes bear in mind the risk of rogue AC
power voltages in the soil. For this reason it is
vital to use a 1:1 microphone transformer (iso-
lating transformer) on the input of the receiver
whenever the receiver (or any other device con-
nected to it) is powered from the AC supply. I
have experimented with an example made by
the firm Jensen that has proved to be absolutely
ideal (type JT-11P-1). A variety of suitable types
are shown on this American firm’s website [4].
Use unscreened cable to connect the ground
spikes to the transformer, the secondary side
of which is hooked up to the receiver input in
place of the coil.

Figure 5.

The author's home-made
coil winding machine.
Smaller versions will suffice
for practical applications.



Figure 6.

The author’s first prototype.
The Arduino data logger is
also visible in the case.

Figure 7.
Test build signed off by
Elektor Labs.
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Alignment, connection and testing

A printed circuit board layout is not provided for
the circuit of the ELF receiver, so readers inter-
ested in replicating it must resort to self-help or
simply assemble the small number of compo-
nents involved on a piece of perf-board or strip
board (Vectorboard; Veroboard). Programs like
LochMaster from Abacom or the free Blackboard
[5] will be of assistance for laying out the board.

The author’s prototype can be seen in Figure 6,
with Figure 7 showing the test build made with
stripboard in Elektor Labs.

Once you have finished the construction and test-
ing, the alignment of the receiver with the oscil-
loscope can begin. Hook the coil up to the input,
arm yourself with a strong magnet (such as one
from a loudspeaker) and investigate each of the
outputs of the op-amps in succession. At the out-
put of IC2 the line hum (so far only pre-filtered
and receivable everywhere) should not exceed
the 50 % overload limit. If the options available
at K2/S1 are insufficient for this, then the value
of R3 should be increased.

As you investigate each successive IC output,
the 50 Hz (60 Hz) sinewave components should
become ever weaker. Now set the oscilloscope
to 1 V/Div and move the magnet to and fro by
hand at a distance of two meters from the coil,
once or twice a second. You should now be able
to observe clear deflections up to the clipping
limit. It should also be possible to detect a slight
ripple even without moving the magnet, result-
ing from ambient signals (unless your home is
in the middle of a forest). Next adjust P1 so that
the peak values of this ripple amount to no more
than +£1 V and lie within the optimum range of
the A-to-D converter. The output signal should
be free of any offset voltages whatsoever. Also
the line frequency sinewave oscillations should be
barely detectable now. At output K3 you should
now have a pure AC signal for downstream pro-
cessing by the ADC.

Installation and

operation of the recorder

Now connect the ELF receiver to the 16-bit Data-
logger module described in the September 2014
edition of Elektor [13]. The ADC samples the
signal with a resolution of 15 bits and a sampling
rate of around 112 Hz. The article also explains
how the ADC module can be connected to an
Arduino Uno, which accepts the digitized data
using a simple program (Sketch) and relays this
to the PC and the recording software.

The recorder software is written in the Processing
programming language [12], which resembles
C. Curly brackets are used for code blocks; each
instruction must be closed off with a semicolon.
The programming environment is very simple:
just open the Editor and write the source text.
Then click on the Start button and you're rolling.



What is ELF?

ELF signals are a mysterious and, to some
degree, myth-ridden subject that amounts in
reality to nothing more than electromagnet-

ic waves of extremely low frequency (hence
ELF) from 3 Hz to 30 Hz. Because commercial
radio transmissions do not exploit such low
frequencies, it is naturally fascinating to inves-
tigate what is going on in this profound realm.

In residential areas many of the signals de-
tectable with the receiver described here
clearly take the form of magnetic waves ra-
diated by supply transformers at the local
substation. The sprawling network of metallic
conductors (ground connections, water and
gas pipes, etc.) evidently behave like a vast
underground antenna that gathers up the
weakest low-frequency alternating currents
flowing in the ground, wherever they may
arise from, and transports them to a common
connection point at the local substation. Here
(this is merely an assumption) these currents
are radiated as magnetic fields by the ground-
ed Petersen Coil (used for ground/earth leak-
age compensation).

In addition to these signals, previous consid-
ered indeterminate, we must note the increas-
ing level of (mainly daytime-only) ‘pollution’
coming from (presumably) commercial and
communal installations such as inverters,
frequency changers and switch-mode power
supplies. With a little patience it is also fea-
sible to prove the presence of the fascinating
so-called Schumann Resonances [11] in the
region around 7.5 Hz along with the 16 2/;

Hz (50 Hz + 3) ‘signature’ of traction current
used by electric trains, which makes an excel-
lent marker signal for testing and calibrating
the receiver (in places where traction current
uses this frequency). Another conceivable ap-
plication (somewhat frivolous in comparison)
for the receiver is as a highly sensitive detec-
tor for (exclusively) moving metallic objects.
Passing automobiles, for example, can be de-
tected at distances of up to around 20 meters
or 60 feet.

The following shots show examples of some
varied and interesting ‘signal harvests':

Wow! This signal occurred on one single occasion
over a night in September 2013. Duration around
one hour. Recording made with electrodes. Frequency
range: 0 to 20 Hz.

A square-wave signal of 1.6 Hz, which arises in
various locations across all Europe at irregular times.
Typical characteristics: phases of activity and intervals

changing regularly.

Extremely powerful 16 Hz bursts, concentrated at
particular locations and even audible direct as a deep
hum in audio amplifiers.

Sounding like whistling when played back at high
speed, this sample has reappeared daily for several
hours at the author’s place of residence over the
years.




Figure 8.

Power section and filter/
amplifier should be placed
as far apart as possible from
one another. Inductance L4
is fitted in between them
(here on the underside of
the PCB).

Software installation

To get a Processing program to run on your com-
puter, you need to download the necessary soft-
ware from the Internet onto your machine.

Go to the Processing website [7] and follow the
instructions given there. The data downloaded
can go into any folder you choose on the hard
disk. Within this data is also a file with the name
processing.exe. Run this program if you want to
write Processing software of your own. Numerous
impressive sample programs not only showcase
the powerful capability of this language but also
indicate how you can make the best use of it.
The Recorder program written in Processing can
be downloaded from the Elektor website [8] into
any folder of your choice.

Important: The Processing program must be
located in a sub-folder bearing the same name
as the program itself—but without the ‘.pde’ suf-
fix. Also all resources required by the program
(such as .wav files or associated graphics) must
be kept in this sub-folder. After double-clicking
on the recorder file (Recorder_.....pde) the Pro-
cessing editor window opens automatically and
the program code is implemented.

In the following line you need to replace ‘COM3’
and enter the COM interface of the PC allocated
by Arduino (see Device Manager in Windows):

serport = new Serial(this, “COM3", 115200);

Then save the program code with File -+ Save.
After a (single) click on the arrow at top-left in
the Editor window, the program begins. The Editor
window with the source code remains during this
process on the screen (in the background). Unfor-
tunately (and not for want of searching count-
less different sources) I have not managed to
find a working .exe file for the program. Further
information about Processing can be found in the
Editor itself (Help —+ Reference) and on countless
other Internet pages.

Operation

Operation of the software recorder in the Win-
dows-style window (Figure 9) is virtually self-ex-
planatory. The test results are shown in three
windows on the left-hand side.

Time signal

An iteration takes five seconds. After the program
starts a signal is always visible here, even ifitis
nct being recorded—and after recording stops.

FFT vs. Time

Every x seconds (x depending on the value set
when downsampling) a new line is plotted—even
if no recoding is being made—and after record-
ing stops.

Supervisory signal

After each iteration of 5 seconds, the highest
amplitude of this time segment is indicated in
the upper window.

The parameters for measurement and display
are set on the right-hand side of the recorder:

Recording time
Length of the recording.

Downsampling

Zoom in the Y direction in order to see the lower
frequencies better. Relates only to the FFT dis-
played and not to the recording.

FFT brightness

Renders the FFT displayed brighter or darker.
Relates only to the FFT displayed and not to the
recording.

FFT scrolling

Pages forwards and backwards through the
analysis data displayed. Valid only for the data
recorded during the current recording phase still
held in RAM. FFT data is not stored on the hard
disk.

Mouse position

Mouse position coordinates and number of but-
tons clicked. Very important if you wish to work
on the program yourself.

Recording
Left-hand button
Normal method of starting a recording of a dura-



tion enter above, automatic saving at the end of
the set time and regular saving intermediately.
Show bright red during recording.

Mote that the names of files saved automatically
contain the start time and the intended stop time
(for example 18:20, if the recording began at
12:20 and was set to record for six hours).

If the recording is cancelled ahead of time, you
will find the previously saved data under file name
planned at the outset (2014_07_02_1220_1820).
The file can nevertheless contain just nulls rather
than data from a particular point in the record-
ing, according to the moment of premature can-
cellation. This is because in this programming
language it is possible to save only complete
Arrays and not, as is otherwise normal, only the
section occupied with data. For this reason files
always retain their full size, even if cancelled
prematurely.

Center button

For intentional buffering. This has the same valid-
ity for the filename as with automatic saving.
Pressing this button makes it possible to observe
the data recorded up to the current time in an
analyzer.

Right-hand button
This button cancels the recording and saves the
data recorded so far to disk. Note that in this

= Revorder_2004_06_0%

case, the stop time specified in the file name is
the clock time valid at the actual time of cancella-
tion. Pressing this button produces an additional
file afterwards.

Data output window
at lower right-hand edge of screen:
After starting, the time remaining until the time
when the recording will end is displayed here
automatically, based on the record duration set.
At the very bottom is the file name, which is also
retained during buffering.
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Figure 9.
Graphical interface of the
recorder software.
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By
Pascal Rondane
(France)

PWM Control
for LED Flashlight

This circuit was designed
for use with an LED flashlight
of the sort used by pedestrians, in
particular those walking at night time.

Once your eyes have become accustomed
to the darkness, the brightness of the lamp at
full power is too great and can actually impede your :
vision. And of course there are other applications where it
is useful to run an LED at reduced power.

As its name suggests, the main function of this
unit is to reduce the brightness of an LED at the
user’s command. An additional function is also
provided: the LED can be flashed at full intensity,
which can come in handy for example when you
are walking at night, see an oncoming vehicle,
and wish to alert the driver to your presence.

The circuit is based around a microcontroller
which performs two tasks in parallel. First, it
generates a PWM (pulsewidth modulation) signal

Features

® Supply voltage: 5V to 15V
e Current consumption: 3.9 mA
(not including LED D2)
® Maximum output current: 1 A
» Battery state thresholds (adjustable)
- Battery charged: 7V
- Battery low: 6V
- Battery flat (flashlight off): 5.4 V

to control the brightness of the LED according to
which of the two modes is in force (steady light
with reduced intensity or full-intensity flashing);
and second, it monitors and displays the level of
charge in the battery.

The PWM technique employed here to obtain a
range of different brightness levels is convenient
for use when modifying an existing flashlight,
as well as being applicable more generally to
LED lighting circuits powered from batteries. The
dimmer circuit as it stands is designed for a bat-
tery voltage of 7.2 V but the regulator chosen is
capable of accepting voltages up to 14 V or 15 V.

The omnipotent microcontroller

The dimmer circuit (see Figure 1) is controlled
by an 8-pin ATtiny45 microcontroller (IC1), which
is in-system programmable.

The brightness of the flashlight’s LED (shown
on the right of the schematic inside the green
dashed box) is controlled by the user by means
of center-off momentary changeover switch 52.
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ATtiny45 is so limited the state of the two con- onnectors

trols on the dimmer unit is read using a sin-
gle analog-to-digital converter input (pin 2) on
the microcontroller. The voltage on this pin is
obtained from the potential divider formed by R1,
R3, R4 and R6, which are connected to switch
52 and pushbutton S1 via K5. When the user
operates one of these controls, some of the resis-
tors in the lower part of the potential divider are
short-circuited, affecting the voltage on pin 1
of K5. From this voltage the microcontroller can
determine which control was pressed and carry
out the appropriate action: increasing or decreas-
ing the brightness of the LED in the case of S2,
or switching from steady mode to full-brightness
flashing mode in the case of S1. The threshold
voltages are as follows:

* 2.8V:S1 and S2 both open

e 2.5V: increase brightness ("UP’)

® 1.5V: decrease brightness (‘DOWN')

s 0 V: flash

* K1: power

# K2: in-system programming for the
microcontroller

# K3: connection to the LED chain in the
{medified) flashlight

# K4: battery charge status indicator

* K5: 51 and S2

The PWM output is also under software contral.
The corresponding pin on the microcontroller
(pin 5) drives the LED chain in the flashlight via
power MOSFET T1.

In order to avoid dazzling the user when the cir-
cuit is powered up, the circuit always starts with
the LEDs at half brightness.

R7 and R9 form a further potential divider con-
nected across the battery supply. The center tap
of the divider is connected to an A/D input of the
microcontroller {(pin 3), allowing it to monitor




Component List Sienser o1 181813-0
Resistors o I
Default: SMD1206, 1%, .25W
R1, R9 =12k
R2, RS = 220Q
R3 = 10kQ
R4 = 27kQ2
R6 = 36k
R7 = 51k
RE = 100Q
Capacitors T1 = IRLL2705PBF (SOT-23)
Default: SMD1206 Divars
C1 = 10nF* :
Figure 2. C2, C6 = 100nF K1,K3 = 2-pin pinheader
The printed circuit board is C3 = 10nF K2 = 6-pin {2x3) pinheader
compact enough to fit inside C4, C5 = 10pF 63V radial Eg = i—pin p[nlr:eager
A ; = 4-pin pinheader
;CYI:_';:F;CEI a;tzrle ﬂ:f";hhght’ Semiconductors 51 = pushbutton
evertneless the suriace IC1 = ATtiny45-20SU (SOIC8) 52 = switch, on-off-on, center detent
mount components are IC2 = AP1117E33G-13 S0T-223) PCB # 140019
sufficiently well spaced to D1i = BAS70* (SOT-23) *see text
allow manual soldering.

"REERRAR SRR ARG R RN R RN R RN B RRR AR ERRAREEERER
'# Battery voltage test (Voltage hysteresis = av)
AR AR R AR AR R R R R AR B R AR HERRAREEERER

Select Case Etat_led 'Voltage hysteresis = @v

Case 1 : 'Operating voltage => OK
Tension_batt = Tension_batt_basse - Tension_hysteresis "BV-BV = 6.8V
If Adcval < Tension_batt Then 'ADC measurement and switching to low battery mode
Etat_led =
End If
Case 2 : 'Low battery

Tension_batt = Tension_batt_dechargee - Tension_hysteresis '5,5V-8V = 5.5V
If Adcval < Tension_batt Then 'ADC measurement and go to discharged battery
' mode - cut the load
Etat_led = 3
End If
Tension_batt = Tension_batt_chargee + Tension_hysteresis
If Adcval »= Tension_batt Then
Etat_led =
End If

Case 3 : 'If low battery/ cutoff LED
Tension_batt = Tension_batt_chargee + Tension_hysteresis '7,2V + @V = 7.2V
If Adcval => Tension_batt Then'ADC measurement and return
' "0K mode "if battery is charged

Etat_led =
End If
Extract from the source
code. The section shown End Select

deals with monitoring the
battery status.




continuously the state of charge of the battery.
This state is indicated using D2 as follows:

* green = battery charged;

s orange = battery low;

» red = battery almost flat.
It is not good for the battery to continue to dis-
charge it when it is almost flat, and so in this last
case the microcontroller turns off all the LEDs in
the flashlight. The LEDs automatically light again
when the supply voltage increases sufficiently.
If the battery supply is at 8 V then 1.5 V will
appear on pin 3 of IC1 and D2 will glow green.
If the supply falls to 6 V then the microcontrol-
ler will measure 1.14 V and D2 will glow orange.
At 5.4 V, with a measured voltage of just 1.0V,
the LED glows red and the flashlight turns off.
When designing the circuit, care was taken to min-
imize its power consumption: it would be rather
a pity to throw power away needlessly in a LED
dimmer! It is for this reason that the battery level
indicator LED flashes in all three of its states.
Schottky diode D1, type BAS70 or equivalent,
protects input PB4 from possible excess voltage.
Capacitor C1 (10 nF) serves to debounce switch
S2. Should your switch be of a particularly inde-
cisive nature you may find that this is not suffi-
cient and hence that the dimming action is not
smooth: before replacing the switch, try increas-
ing the value of C1, say to 100 nF, and see if that
solves the problem.
A type AP1117 voltage regulator provides power
for the circuit at 3.3 V. Although the LED chain
operates at a rather higher voltage (typically
7.2 V) the microcontroller is isolated from its
supply by the MOSFET that switches its power.

Software

The program [1] was written using BASCOM-AVR.
It is easy to modify the code, and only the demon-
stration version of the compiler is needed. Having
set up variables with the thresholds for the various
battery states, we initialize Timere, which han-
dles PWM signal generation, and Timerl, which is
responsible for the flashing of the battery status
indicator LED. The code spends most of its time
waiting for a command from the user. Further
down the code are the routines for indicating the
charge status of the battery and for applying the
thresholds to the A/D converter results to deter-
mine the state of the switch and pushbutton.

In ‘flash’” mode (when S1 is pressed) the LEDs
are driven using the maximum possible pulse
width. A brief time-out filters out any contact

bounce that might lead to unexpected operation.
The comments provided in the listing should help
guide you if you decide to make any changes
to it. For example, you may wish to increase
the speed at which the brightness increases or
decreases. This can be done by reducing the
value of the variable Pas or by changing the PWM
period from the value provided. The unit can be
made to respond more quickly to S1 by reducing
the debounce timeout in variable Tempo_bp_on_
value. Finally, you might want to alter the initial
PWM value (and hence brightness at switch-on)
from the default (Pwm = 108).

Construction
The printed circuit board design is shown in Fig-
ure 2. The compact layout is achieved using
surface-mount components, and this allows the
board to be fitted easily into a cylindrical-style
flashlight. However, we did encounter some unex-
pected problems with certain models where the
transparent tube was so firmly glued to the other
parts that it proved impossible to separate them
without damage.
Once the flashlight is disassembled the only elec-
trical modification to be made is to disconnect the
common ground connection of the LED chains
(which are often arranged as thirty series pairs
all wired in parallel). The red cross in the circuit
diagram (Figure 1) shows where the connection
is broken. A wire must be soldered at this point
connecting the bottom of the LED chain (or chains,
as the case may be) to the terminal on K3 which
in turn connects to T1. Two further wires connect
the flashlight's ground connection and the positive
battery terminal to K1. Then all that remains to
be done is to make two holes in the flashlight’s
body where S1 and 52 can be mounted.
(140019)

Internet Link

[1] www.elektor-magazine.com/140019

Figure 3.

If luck is on your side you
will find a flashlight model
like this one that can easily
be disassembled and then
reassembled with the
dimmer circuit inside.




Design:

André Goldberg,
Mauk van der Laan
and

Ton Giesberts

Text: Jens Nickel

Temperature Sensor
Board with RS-485 interface

Temperature sensors are needed in many automation applications, and the RS-

485 interface allows reliable communication of data even over long distances. Our
compact temperature sensor board is equipped with an ATtiny microcontroller
and an R5-485 driver, and it is possible to connect several sensors in parallel to

one board. In addition we present some example firmware which communicates
temperature readings using the ElektorBus protocol, and software to display the
results on a PC provides the finishing touch.

Our series of articles on the ElektorBus in 2011
generated a lot of interest among readers. We
received hundreds of e-mails containing useful
hints and tips or describing homebrew projects
using the bus. One notable fan of the Elektor-
Bus is André Goldberg, who built an ambient
temperature measurement and control system.
An important aspect of the project is the use
of ElektorBus nodes with temperature sensors,
which transmit readings to his PC.

Part of the appeal of the ElektorBus protocol
is its simplicity. For example, each message is
exactly 16 bytes long. The payload from a sen-
sor board can carry four integer readings (in the
range —1023 to +1023) to a central control unit:
these might represent the outputs of four con-
nected temperature sensors. A message going in
the opposite direction can, for example, instruct

the sensor unit whether to report temperatures
in Celsius or Fahrenheit, or specify the interval
between consecutive readings. The ElektorBus
protocol provides commands for all of the above,
see [1].

An R5-485 interface is used for communication. In
half-duplex mode this requires two signal wires,
and a separate ground must also be provided
(see [2]). RS-485 is in theory highly immune to
interference, and at the data rate used on the
ElektorBus (9600 baud) communication over dis-
tances in excess of 30 m is possible.

Mini bus nodes

We have previously published circuit designs and
printed circuit boards for ElektorBus nodes [3][4].
However, for many applications these boards are
physically too large. André Goldberg gave some



thought to the question of how small the a bus
node board could be made: the design that he
delivered to our labs measures just 18 mm by
26 mm. It includes an ATtiny microcontroller in
an SMD package, which offers six GPIO pins. The
RS-485 driver is of course also an SMD device.
Solder pads are provided to connect the bus lines,
and likewise the in-system programming pins of
the microcontroller and two GPIOs are also only
brought out to solder pads, all in the interests
of saving space. The external oscillator was also
dispensed with, and the temperature sensor is a
D518520 one-wire device. This consumes only
one GPIO pin on the microcontroller as it uses
a special asynchronous protocol for communi-
cation that removes the need for a clock signal
to accompany the data signal. The data signal
even provides power to the sensor: see the data-
sheet [5] for more details. Furthermore, several
ane-wire sensors can be connected to a single
pin on the microcontroller: each sensor includes
a preprogrammed unique 64-bit ID code, and
the microcontroller can use the ID to address a
particular sensor and receive a reading from it.
The DS18520 outputs 9-bit readings with a res-
olution of 0.5 °C.

Challenges ahead
The proposed hardware design creates several
challenges on the software side.

» The ATtiny45 has no hardware UART that
can be used to drive the R5-485 interface
IC. This means that the UART (both transmit
and receive parts) needs to be implemented
in software. An advantage is that the two
GPIO pins used can be chosen arbitrarily.

» A library is needed to read the one-wire
sensor devices, using one further GPIO pin.
Since we may have several sensors con-
nected to the same pin, the microcontroller
will also have to store the IDs of the individ-
ual devices so that the results can be output
in the correct order.

+ The ATtiny does not have enough program
memaory to contain the whole ElektorBus
protocol library that we have described pre-
viously [6][7]. The required parts of the pro-
tocol will need to be reimplemented by hand.

André Goldberg decided to take advantage of
two open source libraries, one for the software
UART and one for the one-wire bus. During the
configuration process the addresses of the indi-
vidual sensor devices are read out and stored in
the microcontroller’'s EEPROM. The readings from
the four sensors are multiplied by ten so that the
temperatures in Celsius with a resolution of 0.1 °C
are represented as integers in accordance with

Component List

Resistors (0805)
R1 = 2.2kQ
R2,R3 = 4.7kQ
R4 = 1200
R5,R6 = 1kQ

Capacitors

C1,C2,C4 = 100nF 25V, 10%, X7R, SMD 0805
C3 = 10pF 25V, 10%, X5R, SMD 0805

C5 = 100pF 16V, 20%, tantalum, SMD Case F

Semiconductors

01 = PMEG2010AEH

D2 = LED, yellow, SMD 0805

D3 = LED, green, SMD 0805

IC1 = ATtiny85-205U, SMD S0-852
IC2 = LT1785, SMD 50-8

IC4 = 78LOS

Miscellaneous
K1,K4 =2-pin pinheader, 0.1 inch pitch, right angled

K3 = 3-way PCB screw terminal block, 0.2 inch pitch
PCB ref. 130468-1 v2.0

IC3 = 8MHz quartz oscillator, 5x7mm, SMD (LF SPX0019079)

K2 = 6-pin (2x3) pinheader or baxheader, 0.1 inch pitch

@ 130168-1v2.0 @
ELEKTOR
w’

180 ‘|

Figure 1.

The single-sided circuit
board measures just 1.14
by 1.25 inch (29 mm by
32 mm). The headers are
mounted on the underside.



Figure 2.

The circuit centers around
the ATtiny85. Only one

pin (PB2) is needed by

the software UART as
transmission and reception
never occur simultaneously.

the ElektorBus protocol. The remaining bytes in
the ElektorBus protocol packet are ‘manually’
assembled into the code.

The circuit

In the Elektor Labs old hand Ton Giesberts imme-
diately set about thinking how to ‘Elektorize’ the
board. We decided to allow for the possibility of
soldering in header pins or screw terminals for
all the connections if desired, and we added a
crystal oscillator for more reliable communication:
this is particularly important if the circuit is to
be subject to extreme variations in temperature.
Nevertheless Ton managed to keep the board
small: the final design measures about 31 mm
by 32 mm (see Figure 1) [8]. The board is dou-
ble-sided, with the ElektorBus screw terminals,
the two-by-three programming header and the
two two-pin headers for the power supply and
for connecting the one-wire sensors located on
the back of the board. The SMD components can
be soldered by hand.

Our freelance colleague Mauk van der Laan found
a significant improvement that could be made to
the circuit. Instead of using two of the six GPIO
pins for the transmit and receive connections for
the software UART, we use only one pin, switching
its function between input and output as needed.
Because communication on the RS-485 bus is
half duplex, a node never needs to speak and lis-
ten simultaneously; collisions between messages
have to be avoided. The advantage of saving a

130288 - 11

GPIO pin is that we can use it to drive an LED to
indicate the status of the node.

The circuit diagram is shown in Figure 2. The
central component is the ATtiny85 [9], which has
more flash memory than the ATtiny45. All six port
pins are used, in some cases for more than one
purpose. The one-wire temperature sensors are
connected to PB4 via header K1. PB3 is driven
by the SMD crystal oscillator module. The SPI
interface on PBO, PB1 and PB2 and the reset pin
PBS form the ISP interface that allows code to be
loaded into the AVR microcontroller. In normal
operation PBO drives the status LED.

The level on PE1 determines whether the RS-485
transceiver is in ‘transmit’ mode (PB1 high) or
‘receive’ mode (PB1 low). PB2 is the pin which,
as described above, carries the UART data being
transmitted or received.

The RS-485 signals are connected to K3. The
120-Q termination resistor can be fitted or omit-
ted as required.

Configuration

We provide standard firmware to run in the
ATtiny85: it is of course open source and is avail-
able for free download at [8]. Mauk van der Laan
has incorporated in the code a software UART
library, a one-wire interface library (modified
from an Arduino library) and a small ElektorBus
interface. The whole thing is controlled by a kind
of operating system that provides rudimentary
multitasking (see the text box for more details).
More advanced users will find studying the com-
mented C++ code very rewarding.

Up to four DS18520 temperature sensors can be
connected in parallel to K1. In this configuration
the datasheet instructs us to tie the VDD pin of
each device to ground so that each sensor derives
its power from the data line. The software uses
an area of EEPROM (‘slot one’ to ‘slot four') in
the ATtiny to store the IDs of the temperature
sensors. When power is applied to the node the
microcontroller extracts the ID from each sensor
over the one-wire bus. It then compares them
with the stored IDs. If a stored ID is not found
on the bus, then that ID is deleted and the stor-
age slot becomes free. If an ID is seen on the
bus that does not match a stored 1D, it is stored
in the first free storage slot.

It is now clear how we configure the system. First
attach just one one-wire sensor and apply power
to the board. The ID of this sensor will be stored



in the first storage slot. It is a good idea to label
this first sensor ‘0’ (assuming that programming
in C has taught you to count from zero; if you
are a BASIC programmer you may prefer to label
it “1'1). Then disconnect the power supply, add
the second sensor in parallel at K1 and power
the board up again. This will store the ID of the
second sensor in the second slot. Repeat the
process for the third and fourth sensors.

The progress of the configuration process is neatly
indicated by the status LED. When the software
starts running the LED blinks rapidly. It then
flashes four times, each flash being either short or
long. A short flash corresponds to an unused stor-
age slot, a long flash to a recognized ID address.
If it is desired to remove a temperature sensor
(even if its storage slot is not known) the sys-
tem can simply be powered down, the sensor
disconnected, and the system powered up again.
The corresponding slot will be freed. The process
described above can then be repeated to add a
new sensor.
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ElektorBus interface

The four temperature sensors correspond to four
‘subnodes’. Our standard firmware periodically
sends the four temperature readings packed into
a single ElektorBus message, taking advantage
of the ‘channels’ within the message payload.
Each channel can carry a value from -1023 to
+1023 [1], and each channel occupies two bytes
within the message payload. The four channels
occupy bytes 6 to 13 of the payload, counting
from zero. The transmitter address in bytes 4

Figure 3.

Structure of a message to
set the interval between
readings on the temperature
sensor board (only bytes
six to nine shown).
‘Interval scale’ is 9, which
is the code for tenths of a
second. The ‘channel’ bits
in principle could allow
different intervals to be set
for different temperature
sensors, but they are

not used in the standard
firmware.




and 5 is fixed at 5" in our node. Bytes 2 and 3
contain the receiver address, fixed in our stan-
dard firmware at ‘10", Bytes 14 and 15 (check-
sum/CRC) are not used.

ber of sensor boards on a single bus. In so-called
‘direct mode’ collisions are avoided very simply
by having a fixed pattern of transmissions. The
sensor node sends the temperature readings at
specified intervals to the ‘master’ (normally the
control software running on a PC). If the master
wants to send a command to the sensor node it

Figure 4.

The sensor board sends its
readings to the PC over the
RS-485 bus.

The standard firmware is designed for one-to-one
communication rather than for use with a num-

waits until it receives a message containing tem-

perature readings and then sends its message
in the pause immediately thereafter. At the nor-
mal bus speed of 9600 baud a message repeat
interval of under 100 ms is possible; however,
the conversion time of the sensor devices is con-
siderably longer than this (it can be as high as
750 ms) and sc a message repeat interval of a
few seconds is a better choice.

Mauk’s firmware sends temperature readings (in
Celsius, multiplied by ten) from all of the sen-
sors it has identified at a default interval of 1 s.
The node also listens for commands to change
the interval, the other possibilities being 5 s and
500 ms (see Figure 3). The units used for the
temperature values can also be changed to Fahr-
enheit and back to Celsius. When the sensor

Multitasking on the ATtiny

The standard firmware was written by Mauk van der Laan, a
freelance software and electronics developer. Mauk's software
is modular and includes a specially-designed operating
system based on state machines to ensure the correct timing
of the execution of tasks: see below.

The file ‘Onewire.h’ contains the one-wire interface library.
‘OneWireTask.cpp/.h' is the state machine that is responsible
for detecting the devices’ IDs and for reading temperature
values from them.

The software UART driver ‘ElektorBusSwiw.cpp/.h" which is
used for half-duplex RS-485 communication is derived from
an open-source RS-232 library. The ElektorBus interface
‘ElektorBus.cpp/.h’ can, however, also work with a hardware
UART. The line

#define ELEKTORBUS_DRIVER_INCLUDE
“ElektorBusSwlw.h™

in the file ‘config.h’ causes ‘ElektorBus.cpp’ in the

standard firmware to access the software UART library.
‘ElektorBusTask.cpp/.h’ is the state machine that controls the
bus interface.

The operating system offers so-called ‘cooperative
multitasking’. In contrast to preemptive multitasking a task
is never interrupted by another: instead, it yields control
voluntarily to the scheduler when it is ready. This means
that no interlock mechanism is needed to prevent a task
being paused at an inappropriate point. Also, unlike more
heavyweight embedded operating systems such as FreeRTOS,
the tasks do not have their own stacks. Each task just has a
single state variable, and so memory usage is minimal: the
operating system can run on an ATtiny with just 8 Kbyte of
flash memory and 2 Kbyte of RAM.

The individual tasks are implemented using state machines.
The entire code for each task is expressed in a switch-case
bleck: depending on the value of the state variable a different
section of the code will be executed. When its actions are
complete, the task calls the method nextState() which
returns control to the main task (also called the ‘runtime’).
Alternatively the task can call nextDelay() with an argument
specifying a delay in milliseconds. This constitutes a request
not to call the task again until the specified time has elapsed.

The scheduler in the runtime maintains a list of running
tasks, each of which is derived from the ‘Task’ class. The




node receives a command message of this type,
the next regular message it transmits will con-
firmation of its current units and scaling (and a
message containing temperature readings will be
lost). Subseguent messages will contain read-
ings as normal. Since the reading in Fahrenheit
can easily exceed 102, the sensor automatically

(Figure 4). On launching the ElektorBusBrowser
you must set the number of the COM port that is
allocated to the RS-485-to-USB converter at the
top of the screen, and then click on the ‘Connect’
button. If the sensor node is running and cor-
rectly configured the readings should now appear
on the screen. Commands can also be sent to

Figure 5.

The user interface on the
PC is as usual based on
HTML. Using the interface

it is possible to adjust the
measurement interval and
the temperature units used.

switches from a scaling value of -1 (tenths of a
degree) to 0 (whole degrees) when a command
to use Fahrenheit units is received.
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PC software

An ordinary terminal emulator program is suffi-
cient for an initial test, at least to check that the
board is indeed outputting readings at one-sec-

ElckicaBusBrowser for T-Sernese

ond intervals. We have also written some cus- - . gl il -
tom demonstration software for the PC. The user T2 * -

interface is as usual written in HTML and Javas- e . §

cript. The software download [8] contains the et

software ElektorBusBrowser.exe and the folder N e OV —
UIBus, which should be dragged to your desktop. (] o - '

The sensor board is connected using its RS-485
interface and the Elektor R5-485-to-USB con-
verter [3], whose USB port is plugged into the PC

scheduler calls the execute() method of each task in turn virtual void execute();
(unless it has requested a delay which has not yet expired). virtual byte getTaskId() { return BLINKTASK_ID; }
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Each task should run for just a short time (perhaps a few 1;
hundred cycles) to maintain the illusion of full multitasking.
void BlinkTask::execute() {
switch(state) {
case BlinkingOn:

The following example code shows a task that flashes an LED.

J/ turn the LED on and wait

class BlinkTask : public UserTask {

500 ms
turnOn();
enum States {Idle, BlinkingOn, BlinkingOff}; nextDelay (BlinkingOff, 580);
return;
public: case BlinkingOff: // turn the LED off and wait
void start() { 5e0 ms
nextState (BlinkingOn) ; turnOff();
i nextDelay(BlinkingOn, 588);
void stop() { return;
nextState(Idle); default: J// invalid state: give up
} panic(l);
}
private: I

void turnOn();
void turnOff();




Figure 6.

Simulation using an
Arduino Uno and the Elektor
extension shield. This node
behaves exactly like the
temperature sensor board

The HTML and JavaScript user interface works
equally well in the ElektorBusBrowserForAndro-
pod, which can be downloaded for free from Goo-

gle Play.

Simulation

Since the standard firmware for the board was
not available at the time we were writing the
PC control software, we simulated a tempera-
ture sensor node using an Arduino Uno board
fitted with an Elektor extension shield [11] and
an RS-485 module [12] (see Figure 6). The sim-
ulated temperature values are generated using
a potentiometer and are shown on the display in
tenths of a degree Celsius. The Arduino Uno sends
the simulated value to the PC in channel 0, and
of course this happens at fixed intervals. It also
responds to control commands issued by the PC
in exactly the same way as the standard firmware
running on a real sensor node. The source code
for the ATmega328 is also available for down-
load [8]: it is based on the EFL [7] and uses the
ElektorBus library. The ‘Hardware’ directory of
the Atmel Studio project contains the code files
for the Arduino Uno, the Elektor extension shield

on the ElektorBus. and the RS-485 ECC module. These make the
higher layers of the software independent of the
the node, but it is necessary to tick the ‘Direct  hardware and they are in turn independent of one
Mode’ check box first. another. Further software for the new shield will
The user interface is straightforward and should  be presented in our next issue.
be self-explanatory (Figure 5). The labels ‘°C’
and ‘°F" next to the temperature values only  Of course the standard firmware and the Elek-
change when a message is received from the sen-  torBus protocol are not set in stone: you are free
sor node confirming the receipt of a command to  to write your own software and design your own
change units. The change in scaling factor is also ~ protocols. Different se