Разделы

В сети

Пользователей: 202
Из них просматривают:
Аналоги: 111. Видео: 1. Даташиты: 60. Инструкции: 3. Новости: 10. Программы: 1. Форум: 16.
Участников: 2
Гостей: 200

Google , Яндекс , далее...
Рекорд 2375 человек онлайн установлен 26.12.2015.

Партнёры


Партнёры

Новые объявления

В настоящее время нет объявлений.

Усилители класса D компании Texas Instruments

Написал MACTEP 06.06.2009 11:00:00 (Просмотров: 23195)

Евгений Звонарев (КОМПЭЛ)

Разработчики  портативной  аудиотехники,  бытовых  аудиосистем,  систем  охраны  и  звукового  оповещения  широко  используют  интегральные усилители  звуковой  частоты класса D. Компания Texas  Instruments является одним из признанных мировых лидеров в производстве микросхем этого типа.

 



Традиционные аудиоусилители классов А, В и АВ для мобильных устройств с автономным питанием уже давно перестали устраивать разработчиков из-за их низкого КПД и, как следствие, высокого расхода энергии батареи или аккумулятора. Усилители класса D имеют гораздо более высокий КПД, поэтому именно они наилучшим образом удовлетворяют предъявленным требованиям к современной портативной технике. Эти усилители применяются и в стационарной технике (телевизоры, персональные компьютеры, домашние или автомобильные стереосистемы и даже мощная усилительная техника для театров и концертных залов) благодаря уменьшению габаритов, веса и цены при сопоставимых параметрах качества с приборами предыдущих поколений классов А, В и АВ. Достижения полупроводниковой технологии последних лет позволили компании Texas Instruments разработать микросхемы для создания высококачественных усилителей звуковой частоты класса D с максимальной выходной мощностью от единиц до нескольких сотен Вт.

Рассеиваемая мощность усилителя, работающего в классе D, существенно меньше, чем у аналогичных приборов класса АВ, работающих в тех же режимах. Это проиллюстрировано на рис. 1 (в качестве примера взята микросхема Texas Instruments TPA2012D2, предназначенная для усилителей портативной техники).

 

Мощности, рассеиваемые усилителями классов АВ и D при одинаковых режимах измерения

 

Рис. 1. Мощности, рассеиваемые усилителями классов АВ и D при одинаковых режимах измерения

Из рисунка 1 хорошо видно, что при одинаковой выходной мощности усилитель класса D имеет потери мощности в несколько раз меньшие по сравнению с аналогичными усилителями класса АВ во всем диапазоне выходных мощностей. Наибольший выигрыш получается при средней выходной мощности. Именно в этом режиме чаще всего и используется аппаратура для воспроизведения звука. Отмеченные свойства дополняет рис. 2, иллюстрирующий зависимости КПД от выходной мощности этих же усилителей при режимах измерения, аналогичных рис. 1. При малой и средней мощностях КПД усилителя класса D в два-три раза выше, чем у усилителя класса АВ.

 

Зависимости КПД от выходной мощности для усилителей класса D и класса АВ при одинаковых режимах измерения

 

Рис. 2. Зависимости КПД от выходной мощности для усилителей класса D и класса АВ при одинаковых режимах измерения

Сравнение эффективности и рассеиваемой мощности для усилителей с очень низкой выходной мощностью может оказаться не в пользу усилителей класса D из-за относительно высокой мощности высокочастотного модулятора, преобразующего аналоговый сигнал в прямоугольные импульсы с широтно-импульсной модуляцией (ШИМ). По этой причине линейные усилители класса АВ при очень низких выходных мощностях иногда оказываются предпочтительнее класса D. Принцип работы простейшего усилителя класса D без обратной связи поясняет рисунок 3.

 

Структурная схема усилителя класса D без обратной связи

 

Рис. 3. Структурная схема усилителя класса D без обратной связи

Входной сигнал предварительного усилителя модулируется треугольными колебаниями для преобразования в широтно-модулированные импульсы, которые усиливаются выходным каскадом, работающим в ключевом режиме. Далее LC-фильтр низких частот интегрирует импульсы разной длительности и срезает высокочастотные составляющие спектра, оставляя только выделенный сигнал звуковой частоты. Осциллограммы процесса ШИМ для усилителя класса D, выполненного по мостовой схеме, приведены на рис. 4. Модуляция в усилителях класса D может осуществляться разными способами, но наиболее распространена именно ШИМ.

 

Осциллограммы ШИМ в мостовом усилителе класса D

 

Рис. 4. Осциллограммы ШИМ в мостовом усилителе класса D

Звуковой сигнал сравнивается с сигналом пилообразной или треугольной формы фиксированной частоты. Первый усилитель на рисунке 3 необходим для предварительного усиления и смещения сигнала до нужного уровня. Второй усилитель и генератор треугольного напряжения образуют модулятор ШИМ. На рисунке 4 длительность широтно-модулированных импульсов пропорциональна уровню входного аналогового сигнала. Мостовой схеме необходимы импульсы ШИМ противоположной полярности для управления другим плечом моста. На рисунках 3 и 4 показаны упрощенные варианты схем. В реальных схемах усилителей класса D обязательно вводятся формирователи времени паузы между импульсами для исключения одновременного включения двух выходных транзисторов и устранения сквозных токов. Частота модуляции и среза низкочастотного фильтра обычно выбирается в несколько раз больше верхней граничной частоты пропускания усилителя. К выбору элементов LC-фильтра необходимо относиться очень внимательно. Этому вопросу уделяется особое внимание в документации производителя и руководствах по применению.

Texas Instruments выпускает микросхемы для создания усилителей класса D низкой, средней и высокой мощности. Параметры для усилителей класса D низкой мощности приведены на рис. 5 и в табл. 1.

 

Микросхемы для усилителей класса D с низкой и средней выходной мощностью

 

Рис. 5. Микросхемы для усилителей класса D с низкой и средней выходной мощностью

Таблица 1. Микросхемы Texas Instruments для усилителей класса D c низкой и средней выходной мощностью (аналоговый вход) 

Наименование Описание Стерео/ моно Pвых, Вт Rнагр. (min), Ом Напряжение
питания, B
Half Power THD+N* (%),
F = 1 кГц
PSSR** дБ Корпус(а)
(min) (max)
TPA2017D2 SmartGain, AGC/DRC, GPIO интерфейс Стерео 2,8 4 2,5 5,5 0,2 80 QFN-20
TPA2000D2 усилитель средней мощности Стерео 2,5 3 4,5 5,5 0,05 77 TSSOP-24
TPA2000D4 усилитель для стереотелефонов Стерео 2,5 4 3,7 5,5 0,1 70 TSSOP-32
TPA2012D2 усилитель в корпусе WCSP 2 x 2 мм Стерео 2,1 4 2,5 5,5 0,2 75 WCSP-16, QFN-20
TPA2016D2 SmartGain, AGC/DRC, I2C интерфейс Стерео 1,7 8 2,5 5,5 0,2 80 WCSP-16
TPA2001D2 усилитель низкой мощности Стерео 1,25 8 4,5 5,5 0,08 77 TSSOP-24
TPA2100P1 для пьзокерамического излучателя Моно 19 Vpp 1,5 мкФ (пьезо) 2,5 5,5 0,2 90 WCSP-16
TPA2035D1 дифференциальный вход, 1,5 х 1,5 мм Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9
TPA2032/3/4D1 дифференциальный вход, фикс. усиление Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9
TPA2013D1 встроенный повышающий DC/DC-преобр. Моно 2,7 4 1,8 5,5 0,2 95 WCSP-16, QFN-20
TPA2036D1 защита от КЗ с автовосстановлением Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2031D1 аналог TPA2010D1, но с плавным стартом Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2010D1 дифференциальный вход;1,45 х 1,45 мм Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2018D1 SmartGain AGC/DRC, I2C интерфейс Моно 1,7 8 2,5 5,55 0,2 80 WCSP
TPA2014D1 встроенный повышающий DC/DC-преобр. Моно 1,5 8 2,5 5,5 0,1 91 WCSP-16, QFN-20
TPA2006D1 дифференциальный вход Моно 1,45 8 2,5 5,5 0,2 75 QFN-8
TPA2005D1 дифференциальный вход Моно 1,4 8 2,5 5,5 0,2 75 MSOP-8, QFN-8, BGA-15
*Half Power THD+N – (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц). **PSSR – Power Supply Rejection Ratio – коэффициент подавления помех по цепям питания

В первую очередь эти микросхемы предназначены для встраивания в мобильные устройства. Подавляющее большинство таких усилителей расчитано на напряжение питания от 2,5 до 5,5 В, но микросхема одноканального усилителя TPA2013D1 имеет расширенный диапазон напряжений питания от 1,8 до 5,5 В благодаря встроенному повышающему DC/DC-преобразователю (Boosted DC/DC). Это позволило обеспечить постоянство выходной мощности при всем диапазоне рабочих напряжений питания по сравнению с обычными усилителями класса D, что наглядно проиллюстрировано на рис. 6.

 

Зависимости выходной мощности для TPA2013D1 и для обычных усилителей класса D

 

Рис. 6. Зависимости выходной мощности для TPA2013D1 и для обычных усилителей класса D

При выходной мощности около 1,5 Вт в диапазоне напряжений питания от 2,3 до 4,8 В характеристика находится в пределах ±0,1 Вт. Большинство обычных усилителей этого класса имеют практически линейную зависимость максимальной выходной мощности от напряжения питания. Преимущество усилителей со встроенным повышающим DC/DC-преобразователем – возможность работы при гораздо более низком напряжении питания батареи (или при ее более глубоком разряде), что повышает степень использования автономного источника питания.

Структурная схема микросхем TPA2013D1 и TPA2014D1 со встроенным повышающим DC/DC-конвертером показана на рис. 7.

 

Структурная схема TPA2013D1 и TPA2014D1 со встроенным повышающим DC/DC-преобразователем

 

Рис. 7. Структурная схема TPA2013D1 и TPA2014D1 со встроенным повышающим DC/DC-преобразователем

В микросхемах предусмотрена защита от нежелательных переключений при коммутации повышающего DC/DC-преобразователя. Встроенный стабилизатор обеспечивает стабильность характеристик в широком диапазоне напряжений питания. При необходимости выход повышающего DC/DC-преобразователя можно использовать для питания маломощных дополнительных схем портативного устройства. Если внимательно посмотреть на параметр PSSR (коэффициент подавления помех по цепям питания) в табл. 1, то бросается в глаза, что именно усилители со встроенными повышающими DC/DC имеют существенно лучшие значения этого параметра (91...95 дБ) по сравнению с остальными усилителями этого класса.

Среди усилителей с низкой и средней выходной мощностью есть и специализированный для работы на пьезокерамический излучатель с допустимой емкостью до 1,5 мкФ. При этом размах выходного напряжения на емкостной нагрузке достигает 19 В (от пика до пика) при минимально допустимом напряжении питания всего 2,5 В. Необходимо обратить внимание, что параметр (THD + N), характеризующий суммарные гармонические искажения вместе с шумовыми составляющими, измеряется на частоте 1 кГц при половине мощности от допустимого максимального значения.

На рис. 8 приведен навигатор для выбора микросхем усилителей класса D высокой мощности (отсчет высокой мощности для этого класса усилителей Texas Instruments начинает с 3 Вт).

 

Микросхемы для усилителей класса D высокой мощности

 

Рис. 8. Микросхемы для усилителей класса D высокой мощности 

Основные параметры этих микросхем сведены в табл. 2. Некоторые из микросхем, приведенных на рис. 8 и в табл. 2, относятся только к анонсированной продукции, поэтому возможность поставки образцов необходимо проверять на сайте производителя.

Таблица 2. Микросхемы Texas Instruments для усилителей класса D c высокой выходной мощностью (аналоговый вход)

Наименование Описание Pвых Вт Rнагр.
(min), Ом
Напряжение
питания, B
Half Power THD+N* (%),
F = 1 кГц
PSSR**, дБ Корпус(а)
(min) (max)
TAS5630 300 Вт усилитель (стерео)
с ОС
300 TBD*** TBD 50 TBD 80 QFP-64
TAS5615 150 Вт усилитель (стерео)
с ОС
150 TBD TBD 50 TBD 80 QFP-64
TAS5412 усилитель (стерео) с несимметричным входом 100 2 6 24 0,04 75 HTQFP-64
TAS5422 усилитель (стерео) с симметричным входом 100 2 6 24 0,04 75 HTQFP-64
TAS5414A усилитель (квадро) с несимметричным входом 45 2 8 22 0,04 75 SSOP-36, HTQFP-64
TAS5424A усилитель (квадро) с симметричным входом 45 2 8 22 0,04 75 SSOP-44
TPA3106D1 усилитель (моно) со входом синхронизации 40 4 10 26 0,2 70 HLQFP-32
TPA3123D2 усилитель (стерео) с несимметричным входом 25 4 10 30 0,08 60 HTSSOP-24
TPA3100D2 усилитель (стерео) 20 Вт 20 4 10 26 0,1 80 HTQFP-48, QFN-48
TPA3001D1 усилитель (моно) 20 Вт 20 4 8 18 0,06 73 HTSSOP-24
TPA3110D2 усилитель (стерео) с ограничением мощности 15 4 8 26 <0,1 70 TSSOP-28
TPA3122D2 усилитель (стерео) в корпусе DIP-20 15 4 10 30 <0,15 60 PDIP-20
TPA3107D2 усилитель (стерео) 15 Вт 15 6 10 26 0,08 70 HTQFP-64
TPA3124D2 усилитель (стерео) 15 Вт
с функцией Mute****
15 4 10 26 0,04 60 TSSOP-24
TPA3121D2 усилитель (стерео) с несимметричным входом 15 4 10 26 0,04 60 TSSOP-24
TPA3004D2 усилитель (стерео) c регулировкой громкости 12 4 8,5 18 0,1 80 HTQFP-48
TPA3125D2 усилитель (стерео) в корпусе DIP-20 10 4 10 26 0,15 60 PDIP-20
TPA3101D2 усилитель (стерео) 10 Вт 10 4 10 26 0,1 80 HTQFP-48, QFN-48
TPA3111D1 усилитель (моно) с ограничением мощности 10 4 8 26 <0,1 70 TSSOP-28
TPA3002D2 усилитель (стерео) c регулировкой громкости 9 8 8,5 14 0,06 80 HTQFP-48
TPA3007D2 усилитель (стерео) 6.5 Вт 6,5 8 8 18 0,2 73 TSSOP-24
TPA3009D2 усилитель (стерео) c регулировкой громкости 6 8 8,5 14 0,045 80 HTQFP-48
TPA3005D2 усилитель (стерео) 6 Вт 6 8 8 18 0,1 80 HTQFP-48
TPA3003D2 усилитель (стерео) c регулировкой громкости 3 8 8,5 14 0,2 80 TQFP-48
TPA2008D2 усилитель (стерео) c регулировкой громкости 3 3 4,5 5,5 0,05 70 HTSSOP-24
*Half Power THD+N – (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц) **PSSR – Power Supply Rejection Ratio – коэффициент подавления помех по цепям питания ***TBD – To Be Documented – данные будут указаны производителем позднее ****Mute – приглушение звука

Продолжение статьи ...

6
Комментарии принадлежат их авторам. Мы не несем ответственности за их содержание.

Разное

Интересно

Если "ревёт" один из дросселей резонансного стабилизатора, забейте деревянный клин между его катушками.

Похожие статьи