Усилители класса D компании Texas Instruments
Евгений Звонарев (КОМПЭЛ)
Разработчики портативной аудиотехники, бытовых аудиосистем, систем охраны и звукового оповещения широко используют интегральные усилители звуковой частоты класса D. Компания Texas Instruments является одним из признанных мировых лидеров в производстве микросхем этого типа.
Традиционные аудиоусилители классов А, В и АВ для мобильных устройств с автономным питанием уже давно перестали устраивать разработчиков из-за их низкого КПД и, как следствие, высокого расхода энергии батареи или аккумулятора. Усилители класса D имеют гораздо более высокий КПД, поэтому именно они наилучшим образом удовлетворяют предъявленным требованиям к современной портативной технике. Эти усилители применяются и в стационарной технике (телевизоры, персональные компьютеры, домашние или автомобильные стереосистемы и даже мощная усилительная техника для театров и концертных залов) благодаря уменьшению габаритов, веса и цены при сопоставимых параметрах качества с приборами предыдущих поколений классов А, В и АВ. Достижения полупроводниковой технологии последних лет позволили компании Texas Instruments разработать микросхемы для создания высококачественных усилителей звуковой частоты класса D с максимальной выходной мощностью от единиц до нескольких сотен Вт.
Рассеиваемая мощность усилителя, работающего в классе D, существенно меньше, чем у аналогичных приборов класса АВ, работающих в тех же режимах. Это проиллюстрировано на рис. 1 (в качестве примера взята микросхема Texas Instruments TPA2012D2, предназначенная для усилителей портативной техники).
Рис. 1. Мощности, рассеиваемые усилителями классов АВ и D при одинаковых режимах измерения
Из рисунка 1 хорошо видно, что при одинаковой выходной мощности усилитель класса D имеет потери мощности в несколько раз меньшие по сравнению с аналогичными усилителями класса АВ во всем диапазоне выходных мощностей. Наибольший выигрыш получается при средней выходной мощности. Именно в этом режиме чаще всего и используется аппаратура для воспроизведения звука. Отмеченные свойства дополняет рис. 2, иллюстрирующий зависимости КПД от выходной мощности этих же усилителей при режимах измерения, аналогичных рис. 1. При малой и средней мощностях КПД усилителя класса D в два-три раза выше, чем у усилителя класса АВ.
Рис. 2. Зависимости КПД от выходной мощности для усилителей класса D и класса АВ при одинаковых режимах измерения
Сравнение эффективности и рассеиваемой мощности для усилителей с очень низкой выходной мощностью может оказаться не в пользу усилителей класса D из-за относительно высокой мощности высокочастотного модулятора, преобразующего аналоговый сигнал в прямоугольные импульсы с широтно-импульсной модуляцией (ШИМ). По этой причине линейные усилители класса АВ при очень низких выходных мощностях иногда оказываются предпочтительнее класса D. Принцип работы простейшего усилителя класса D без обратной связи поясняет рисунок 3.
Рис. 3. Структурная схема усилителя класса D без обратной связи
Входной сигнал предварительного усилителя модулируется треугольными колебаниями для преобразования в широтно-модулированные импульсы, которые усиливаются выходным каскадом, работающим в ключевом режиме. Далее LC-фильтр низких частот интегрирует импульсы разной длительности и срезает высокочастотные составляющие спектра, оставляя только выделенный сигнал звуковой частоты. Осциллограммы процесса ШИМ для усилителя класса D, выполненного по мостовой схеме, приведены на рис. 4. Модуляция в усилителях класса D может осуществляться разными способами, но наиболее распространена именно ШИМ.
Рис. 4. Осциллограммы ШИМ в мостовом усилителе класса D
Звуковой сигнал сравнивается с сигналом пилообразной или треугольной формы фиксированной частоты. Первый усилитель на рисунке 3 необходим для предварительного усиления и смещения сигнала до нужного уровня. Второй усилитель и генератор треугольного напряжения образуют модулятор ШИМ. На рисунке 4 длительность широтно-модулированных импульсов пропорциональна уровню входного аналогового сигнала. Мостовой схеме необходимы импульсы ШИМ противоположной полярности для управления другим плечом моста. На рисунках 3 и 4 показаны упрощенные варианты схем. В реальных схемах усилителей класса D обязательно вводятся формирователи времени паузы между импульсами для исключения одновременного включения двух выходных транзисторов и устранения сквозных токов. Частота модуляции и среза низкочастотного фильтра обычно выбирается в несколько раз больше верхней граничной частоты пропускания усилителя. К выбору элементов LC-фильтра необходимо относиться очень внимательно. Этому вопросу уделяется особое внимание в документации производителя и руководствах по применению.
Texas Instruments выпускает микросхемы для создания усилителей класса D низкой, средней и высокой мощности. Параметры для усилителей класса D низкой мощности приведены на рис. 5 и в табл. 1.
Рис. 5. Микросхемы для усилителей класса D с низкой и средней выходной мощностью
Таблица 1. Микросхемы Texas Instruments для усилителей класса D c низкой и средней выходной мощностью (аналоговый вход)
Наименование | Описание | Стерео/ моно | Pвых, Вт | Rнагр. (min), Ом | Напряжение питания, B | Half Power THD+N* (%), F = 1 кГц | PSSR** дБ | Корпус(а) | |
---|---|---|---|---|---|---|---|---|---|
(min) | (max) | ||||||||
TPA2017D2 | SmartGain, AGC/DRC, GPIO интерфейс | Стерео | 2,8 | 4 | 2,5 | 5,5 | 0,2 | 80 | QFN-20 |
TPA2000D2 | усилитель средней мощности | Стерео | 2,5 | 3 | 4,5 | 5,5 | 0,05 | 77 | TSSOP-24 |
TPA2000D4 | усилитель для стереотелефонов | Стерео | 2,5 | 4 | 3,7 | 5,5 | 0,1 | 70 | TSSOP-32 |
TPA2012D2 | усилитель в корпусе WCSP 2 x 2 мм | Стерео | 2,1 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-16, QFN-20 |
TPA2016D2 | SmartGain, AGC/DRC, I2C интерфейс | Стерео | 1,7 | 8 | 2,5 | 5,5 | 0,2 | 80 | WCSP-16 |
TPA2001D2 | усилитель низкой мощности | Стерео | 1,25 | 8 | 4,5 | 5,5 | 0,08 | 77 | TSSOP-24 |
TPA2100P1 | для пьзокерамического излучателя | Моно | 19 Vpp | 1,5 мкФ (пьезо) | 2,5 | 5,5 | 0,2 | 90 | WCSP-16 |
TPA2035D1 | дифференциальный вход, 1,5 х 1,5 мм | Моно | 2,75 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-9 |
TPA2032/3/4D1 | дифференциальный вход, фикс. усиление | Моно | 2,75 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-9 |
TPA2013D1 | встроенный повышающий DC/DC-преобр. | Моно | 2,7 | 4 | 1,8 | 5,5 | 0,2 | 95 | WCSP-16, QFN-20 |
TPA2036D1 | защита от КЗ с автовосстановлением | Моно | 2,5 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-9 |
TPA2031D1 | аналог TPA2010D1, но с плавным стартом | Моно | 2,5 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-9 |
TPA2010D1 | дифференциальный вход;1,45 х 1,45 мм | Моно | 2,5 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-9 |
TPA2018D1 | SmartGain AGC/DRC, I2C интерфейс | Моно | 1,7 | 8 | 2,5 | 5,55 | 0,2 | 80 | WCSP |
TPA2014D1 | встроенный повышающий DC/DC-преобр. | Моно | 1,5 | 8 | 2,5 | 5,5 | 0,1 | 91 | WCSP-16, QFN-20 |
TPA2006D1 | дифференциальный вход | Моно | 1,45 | 8 | 2,5 | 5,5 | 0,2 | 75 | QFN-8 |
TPA2005D1 | дифференциальный вход | Моно | 1,4 | 8 | 2,5 | 5,5 | 0,2 | 75 | MSOP-8, QFN-8, BGA-15 |
*Half Power THD+N – (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц). **PSSR – Power Supply Rejection Ratio – коэффициент подавления помех по цепям питания |
В первую очередь эти микросхемы предназначены для встраивания в мобильные устройства. Подавляющее большинство таких усилителей расчитано на напряжение питания от 2,5 до 5,5 В, но микросхема одноканального усилителя TPA2013D1 имеет расширенный диапазон напряжений питания от 1,8 до 5,5 В благодаря встроенному повышающему DC/DC-преобразователю (Boosted DC/DC). Это позволило обеспечить постоянство выходной мощности при всем диапазоне рабочих напряжений питания по сравнению с обычными усилителями класса D, что наглядно проиллюстрировано на рис. 6.
Рис. 6. Зависимости выходной мощности для TPA2013D1 и для обычных усилителей класса D
При выходной мощности около 1,5 Вт в диапазоне напряжений питания от 2,3 до 4,8 В характеристика находится в пределах ±0,1 Вт. Большинство обычных усилителей этого класса имеют практически линейную зависимость максимальной выходной мощности от напряжения питания. Преимущество усилителей со встроенным повышающим DC/DC-преобразователем – возможность работы при гораздо более низком напряжении питания батареи (или при ее более глубоком разряде), что повышает степень использования автономного источника питания.
Структурная схема микросхем TPA2013D1 и TPA2014D1 со встроенным повышающим DC/DC-конвертером показана на рис. 7.
Рис. 7. Структурная схема TPA2013D1 и TPA2014D1 со встроенным повышающим DC/DC-преобразователем
В микросхемах предусмотрена защита от нежелательных переключений при коммутации повышающего DC/DC-преобразователя. Встроенный стабилизатор обеспечивает стабильность характеристик в широком диапазоне напряжений питания. При необходимости выход повышающего DC/DC-преобразователя можно использовать для питания маломощных дополнительных схем портативного устройства. Если внимательно посмотреть на параметр PSSR (коэффициент подавления помех по цепям питания) в табл. 1, то бросается в глаза, что именно усилители со встроенными повышающими DC/DC имеют существенно лучшие значения этого параметра (91...95 дБ) по сравнению с остальными усилителями этого класса.
Среди усилителей с низкой и средней выходной мощностью есть и специализированный для работы на пьезокерамический излучатель с допустимой емкостью до 1,5 мкФ. При этом размах выходного напряжения на емкостной нагрузке достигает 19 В (от пика до пика) при минимально допустимом напряжении питания всего 2,5 В. Необходимо обратить внимание, что параметр (THD + N), характеризующий суммарные гармонические искажения вместе с шумовыми составляющими, измеряется на частоте 1 кГц при половине мощности от допустимого максимального значения.
На рис. 8 приведен навигатор для выбора микросхем усилителей класса D высокой мощности (отсчет высокой мощности для этого класса усилителей Texas Instruments начинает с 3 Вт).
Рис. 8. Микросхемы для усилителей класса D высокой мощности
Основные параметры этих микросхем сведены в табл. 2. Некоторые из микросхем, приведенных на рис. 8 и в табл. 2, относятся только к анонсированной продукции, поэтому возможность поставки образцов необходимо проверять на сайте производителя.
Таблица 2. Микросхемы Texas Instruments для усилителей класса D c высокой выходной мощностью (аналоговый вход)
Наименование | Описание | Pвых Вт | Rнагр. (min), Ом | Напряжение питания, B | Half Power THD+N* (%), F = 1 кГц | PSSR**, дБ | Корпус(а) | |
---|---|---|---|---|---|---|---|---|
(min) | (max) | |||||||
TAS5630 | 300 Вт усилитель (стерео) с ОС |
300 | TBD*** | TBD | 50 | TBD | 80 | QFP-64 |
TAS5615 | 150 Вт усилитель (стерео) с ОС |
150 | TBD | TBD | 50 | TBD | 80 | QFP-64 |
TAS5412 | усилитель (стерео) с несимметричным входом | 100 | 2 | 6 | 24 | 0,04 | 75 | HTQFP-64 |
TAS5422 | усилитель (стерео) с симметричным входом | 100 | 2 | 6 | 24 | 0,04 | 75 | HTQFP-64 |
TAS5414A | усилитель (квадро) с несимметричным входом | 45 | 2 | 8 | 22 | 0,04 | 75 | SSOP-36, HTQFP-64 |
TAS5424A | усилитель (квадро) с симметричным входом | 45 | 2 | 8 | 22 | 0,04 | 75 | SSOP-44 |
TPA3106D1 | усилитель (моно) со входом синхронизации | 40 | 4 | 10 | 26 | 0,2 | 70 | HLQFP-32 |
TPA3123D2 | усилитель (стерео) с несимметричным входом | 25 | 4 | 10 | 30 | 0,08 | 60 | HTSSOP-24 |
TPA3100D2 | усилитель (стерео) 20 Вт | 20 | 4 | 10 | 26 | 0,1 | 80 | HTQFP-48, QFN-48 |
TPA3001D1 | усилитель (моно) 20 Вт | 20 | 4 | 8 | 18 | 0,06 | 73 | HTSSOP-24 |
TPA3110D2 | усилитель (стерео) с ограничением мощности | 15 | 4 | 8 | 26 | <0,1 | 70 | TSSOP-28 |
TPA3122D2 | усилитель (стерео) в корпусе DIP-20 | 15 | 4 | 10 | 30 | <0,15 | 60 | PDIP-20 |
TPA3107D2 | усилитель (стерео) 15 Вт | 15 | 6 | 10 | 26 | 0,08 | 70 | HTQFP-64 |
TPA3124D2 | усилитель (стерео) 15 Вт с функцией Mute**** |
15 | 4 | 10 | 26 | 0,04 | 60 | TSSOP-24 |
TPA3121D2 | усилитель (стерео) с несимметричным входом | 15 | 4 | 10 | 26 | 0,04 | 60 | TSSOP-24 |
TPA3004D2 | усилитель (стерео) c регулировкой громкости | 12 | 4 | 8,5 | 18 | 0,1 | 80 | HTQFP-48 |
TPA3125D2 | усилитель (стерео) в корпусе DIP-20 | 10 | 4 | 10 | 26 | 0,15 | 60 | PDIP-20 |
TPA3101D2 | усилитель (стерео) 10 Вт | 10 | 4 | 10 | 26 | 0,1 | 80 | HTQFP-48, QFN-48 |
TPA3111D1 | усилитель (моно) с ограничением мощности | 10 | 4 | 8 | 26 | <0,1 | 70 | TSSOP-28 |
TPA3002D2 | усилитель (стерео) c регулировкой громкости | 9 | 8 | 8,5 | 14 | 0,06 | 80 | HTQFP-48 |
TPA3007D2 | усилитель (стерео) 6.5 Вт | 6,5 | 8 | 8 | 18 | 0,2 | 73 | TSSOP-24 |
TPA3009D2 | усилитель (стерео) c регулировкой громкости | 6 | 8 | 8,5 | 14 | 0,045 | 80 | HTQFP-48 |
TPA3005D2 | усилитель (стерео) 6 Вт | 6 | 8 | 8 | 18 | 0,1 | 80 | HTQFP-48 |
TPA3003D2 | усилитель (стерео) c регулировкой громкости | 3 | 8 | 8,5 | 14 | 0,2 | 80 | TQFP-48 |
TPA2008D2 | усилитель (стерео) c регулировкой громкости | 3 | 3 | 4,5 | 5,5 | 0,05 | 70 | HTSSOP-24 |
*Half Power THD+N – (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц) **PSSR – Power Supply Rejection Ratio – коэффициент подавления помех по цепям питания ***TBD – To Be Documented – данные будут указаны производителем позднее ****Mute – приглушение звука |