Разделы

В сети

Пользователей: 115
Из них просматривают:
Аналоги: 46. Галерея: 1. Даташиты: 51. Инструкции: 10. Новости: 3. Профиль пользователя: 2. Форум: 2.
Участников: 2
Гостей: 113

Google , Яндекс , далее...
Рекорд 2375 человек онлайн установлен 26.12.2015.

Партнёры


Партнёры

Новые объявления

В настоящее время нет объявлений.
Решение задачи охлаждения SMD-компонентов

Решение задачи охлаждения SMD-компонентовс помощью тепловой перемычки ТПИ

Сообщений MACTEP 19.07.2021 20:20:00 (Просмотров: 6660)
В статье описаны новый чип-компонент и технические решения на его базе, обеспечивающие распределение тепла от теплонагруженных SMD активных и пассивных компонентов печатного узла. Снижение тепловыделения активных и пассивных компонентов на печатной плате при высокой плотности монтажа повышает надежность электронной техники.

Повышение доли электронной техники, использующей технологию поверхностного монтажа, требует снижения мощности компонентов и тепловыделения печатных узлов, а там, где это невозможно в полной мере, – новых подходов в обеспечении тепловых режимов. Охлаждение SMD-компонентов затруднено конструктивно из-за их малых пространственных объёмов.

Теплорассеяние печатного узла в целом возможно увеличить общей принудительной конвекцией (обдувом вентилятором). При этом точечные перегревы компонентов снизить затруднительно. Относительно большие компоненты (например, микросхемы процессоров, памяти и т.п.) охлаждают дополнительными низкопрофильными радиаторами или тепловыми трубками [1]. Подобные решения широко применяют в ноутбуках. Но что делать при точечных перегревах компонентов размерами 0,5…1,0 мм? Необходимо распределить и рассеять тепловые потоки в менее нагруженные зоны печатного узла. Такие решения в самом простом случае реализуемы топологическими методами – достаточно увеличить монтажную площадку, чтобы рассеять лишнюю тепловую энергию. Однако при плотном монтаже площадь для рассеяния мощности ограничена, ужесточается требование электрической изоляции, в том числе от теплоотвода.

Электрическая прочность изоляции важна, в частности, в медицинской, промышленности также необходимо выполнение критерия взрывозащищён-ности при работе с кислородом, горючими газами и легковоспламеняющимися жидкостями, т.е. работа без искро- и дугообразования. Для контроля электрической прочности изоляции оборудования проводят соответствующие испытания [2], и используемые электронные компоненты должны обладать заведомо большей стойкостью.

Для решения обеих проблем одновременно (распределения тепла и обеспечения электрической изоляции) и разработан новый пассивный чип-компонент, передающий тепловой поток и имеющий заданную электрическую прочность изоляции - тепловая перемычка типа ТПИ.

Разработка тепловой перемычки обусловлена требованиями новых технологий сборки и основана на достижениях современного материаловедения. Теплопроводность керамического основания тепловой перемычки λТ сопоставима с теплопроводностью металлов и составляет 170...200 Вт/(м*К). При этом электрическая прочность материала составляет величину порядка 15 кВ/мм, что и обеспечивает отличную электрическую изоляцию при сохранении передачи теплового потока.

Принцип функционирования тепловой перемычки
Рис. 1. Принцип функционирования тепловой перемычки

На рисунке 1 схематично показан принцип функционирования тепловой перемычки. Тепловой поток от источника тепла (например, тепловыделяющей микросхемы) через керамическое тело и монтажные контакты тепловой перемычки поступает к приёмнику тепла (например, площадке с металлизированными отверстиями, заполненными припоем, или общей шине). Распределённый таким образом тепловой поток может рассеяться естественной конвекцией и/или перейти в дополнительный теплоотвод.

Тепловыделяющий компонент без использования тепловой перемычки
Рис. 2. Тепловыделяющий компонент без использования тепловой перемычки

На рисунке 2 представлена типовая ситуация с офаниченнымтеплоотводом тепловыделяющего компонента на плате, приводящим к перегреву. Рисунок 3 иллюстрирует ту же ситуацию, но с установленной тепловой перемычкой для распределения тепла от тепловыделяющего компонента. Конечный теплоприемник на рисунке не показан. Тепловой режим компонента в данном случае улучшается.

Тепловыделяющий компонент с использованием тепловой перемычки
Рис. 3. Тепловыделяющий компонент с использованием тепловой перемычки

Использование тепловых перемычек для организации единого теплоотвода с гальванической развязкой
Рис. 4. Использование тепловых перемычек для организации единого теплоотвода с гальванической развязкой

Рисунок 4 иллюстрирует возможность повышения плотности монтажа, когда за счёт высокой электрической прочности (Uпр > 1,5 кВ) и высокого сопротивления изоляции (Rиз > 999 МОм) тепловых перемычек возможно использование единого электропроводного теплоотвода. Кроме того, подобным способом возможно поддерживать в едином температурном режиме активные компоненты, которые должны работать в паре, но не могут при этом быть соединёнными электрически (например, комплементарная пара транзисторов и др.).

Тепловые перемычки, ввиду нормированного переходного теплового сопротивления и электрической изоляции, возможно использовать для термо-статирования режимов компонентов, требующих гальванической развязки с соответствующими датчиками, или иных аналогичных приложений.

Основным функциональным параметром тепловой перемычки является тепловое сопротивление, R1[°С/Вт], в практически требуемых случаях определяемое геометрическими размерами [3]:

Формула теплового сопротивления

где L H, B - длина, высота и ширина тепловой перемычки; λT = 170 Вт/(м·К) - теплопроводность керамики на основе нитрида алюминия.

Характеристики тепловых перемычек типа ТПИ приведены в таблицах 1 и 2.

Таблица 1. Характеристики тепловых перемычек типа ТПИ
Характеристики тепловых перемычек типа ТПИ

Таблица 2. Характеристики тепловых перемычек типа ТПИ
Характеристики тепловых перемычек типа ТПИ



Заключение

Тепловая перемычка ТПИ позволяет разработчикам:
• отвести и распределить тепловые потоки от перегретых участков и компонентов печатного узла;
• обеспечить электрическую изоляцию между источником и приёмником тепла;
• обеспечить увеличение плотности монтажа за счёт гальванической развязки различных цепей при использовании единого те-плоотвода;
• обеспечить выравнивание температуры между компонентами, работающими в совместном режиме;
• обеспечить гальваническую развязку датчиков при термостатировании компонентов, а также решать иные задачи.
СОВРЕМЕННАЯ ЭЛЕКТРОНИКА №6 2021
Илья Малышев (min@erkon-nn.ru), к. т. н., Юрий Еремеев (eremeev@erkon-nn.ru)

Литература

1. Дульнев Г. Н. Тепло- и массообмен в радиоэлектронной аппаратуре: Учебник для вузов по спец. «Конструир. и произв. радиоаппаратуры». - М.: Высш. шк, 1984. -247 с. ил., с. 146-150.
2. ГОСТ IEC 60950-1-2011 Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования
3. Уонг X. Основные формулы и данные по теплообмену для инженеров / Пер. с англ. // Справочник. - М.: Атомиздат, 1979- -216 с, ил.   

9
Комментарии принадлежат их авторам. Мы не несем ответственности за их содержание.

 Решение задачи охлаждения SMD-компонентов
Практикант
Практикант
Дата регистрации: 25.02.2015
Откуда:
Сообщений: 15
не в сети
Для ВП не годится. Изготовитель позиционирует перемычки с приемкой ОТК. А значит и критичные к надежности случаи применения типа медицины под вопросом.
Отправитель Нити

Разное

Интересно

При замене электролитических конденсаторов, кроме соблюдения полярности, не следует значительно превышать допустимое рабочее напряжение.
Например, если конденсатор рассчитан на рабочее напряжение 16 В, то при установке нового той же емкости, но рассчитанного на напряжение 300 В после непродолжительной эксплуатации произойдет его расформовка, и емкость его значительно уменьшится.

Похожие статьи